Prévision des températures de l'eau en rivières à l'aide d'un modèle conceptuel : le cas de la rivière Moisie

1994 ◽  
Vol 21 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Guy Morin ◽  
Tonino-Joseph Nzakimuena ◽  
Wanda Sochanski

Hydro-Québec is projecting to increase the hydroelectric production capacity of the St. Marguerite River by diversion of the tributaries Pékans and Carheil rivers of the Moisie River, the most productive salmon river of the whole Quebec. Along with substantial changes in hydrological regimes, this hydroelectric development is most likely to affect some physical environment factors such as the water temperature, which is of prime importance for the biotope and, in particular, for the salmon productivity. The objective of the present study is to simulate, over a long period of time, the river water temperatures under natural conditions as compare to those after the impoundment, to assess the consequences of the tributary diversion. We used the hydrological CEQUEAU model coupled with a temperature model.The temperature model developed is applicable to the ice-free period and calculates daily water temperatures in rivers by computing an energy budget to each element of the watershed. The energy budget considers the short-wave solar radiation, long-wave radiation, evaporation, and convection in the air as well as the advective heat of various inflows from surface runoff, interflow, and groundwaters. The estimation of the atmospheric thermal exchanges is based on the equations usually found in literature. The volumes of the various inflows are given by the hydrological model. The temperature model uses daily data for air temperature and monthly data for solar radiation, cloudiness, wind speed, and vapour pressure.The model has been applied to the Moisie River (Québec), using the measured values for the calibration. Both observed and calculated values show good agreement. The model was also used to simulate, over the whole watershed, the water temperatures for the 1961–1989 period and after the diversion. The results show that the tributary diversion contributed to increase the water temperature of the Moisie River and that this increase is gradually attenuated as we progress downstream. Key words: temperature, impacts, model, Moisie, Québec, diversion, hydrology.

2017 ◽  
Vol 21 (6) ◽  
pp. 3231-3247 ◽  
Author(s):  
Cédric L. R. Laizé ◽  
Cristian Bruna Meredith ◽  
Michael J. Dunbar ◽  
David M. Hannah

Abstract. Stream water temperature is a key control of many river processes (e.g. ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). Consequently, the effect of climate change and variability on stream temperature is a major scientific and practical concern. This paper aims (1) to improve the understanding of large-scale spatial and temporal variability in climate–water temperature associations, and (2) to assess explicitly the influence of basin properties as modifiers of these relationships. A dataset was assembled including six distinct modelled climatic variables (air temperature, downward short-wave and long-wave radiation, wind speed, specific humidity, and precipitation) and observed stream temperatures for the period 1984–2007 at 35 sites located on 21 rivers within 16 basins (Great Britain geographical extent); the study focuses on broad spatio-temporal patterns, and hence was based on 3-month-averaged data (i.e. seasonal). A wide range of basin properties was derived. Five models were fitted (all seasons, winter, spring, summer, and autumn). Both site and national spatial scales were investigated at once by using multi-level modelling with linear multiple regressions. Model selection used multi-model inference, which provides more robust models, based on sets of good models, rather than a single best model. Broad climate–water temperature associations common to all sites were obtained from the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, were assessed against basin properties with analysis of variance (ANOVA). All six climate predictors investigated play a role as a control of water temperature. Air temperature and short-wave radiation are important for all models/seasons, while the other predictors are important for some models/seasons only. The form and strength of the climate–stream temperature association vary depending on season and on water temperature. The dominating climate drivers and physical processes may change across seasons and across the stream temperature range. The role of basin permeability, size, and elevation as modifiers of the climate–water temperature associations was confirmed; permeability has the primary influence, followed by size and elevation. Smaller, upland, and/or impermeable basins are the most influenced by atmospheric heat exchanges, while larger, lowland and permeable basins are the least influenced. The study showed the importance of accounting properly for the spatial and temporal variability of climate–stream temperature associations and their modification by basin properties.


2020 ◽  
Author(s):  
Juditha Schmidt ◽  
Sebastian Westermann ◽  
Bernd Etzelmüller ◽  
Florence Magnin

<p>Climate change has a strong impact on periglacial regions and intensifies the degradation of mountain permafrost. This can result in instabilities of steep rock walls as rock- and ice-mechanical properties are modified. Besides altitude and the related air temperature, latitude is a crucial factor, as solar radiation has a strong impact on the energy transfer processes from the atmosphere to the ground. It can differ significantly in intensity and time over latitudinal positions and exposures of frozen rock slopes.</p><p>In this project, we suggest improving the parametrization of short-wave and long-wave radiation in thermal models for permafrost degradation. To achieve this, we will analyze temperature data of surface temperature loggers from Southern Norway to Svalbard. In total, 37 loggers were installed between 2010 and 2017. The field sites display enormous latitudinal gradients as well as topographic settings. Furthermore, they provide hourly data, allowing us to set up short-stepped time series for examination of solar radiation angles at varying latitudes.</p><p>The data is used to set up a transient heat-flow model (CryoGrid) to simulate the local thermal regime. The model takes into account varying input of short-wave radiation due to aspect, slope angle and time as well as long-wave radiation under different sky-view factors. Finally, the influence of solar radiation on permafrost degradation in steep rock walls is investigated.</p>


2020 ◽  
Vol 209 ◽  
pp. 03019
Author(s):  
Nikolay Moskalenko ◽  
Maryana Khamidullina ◽  
Azat Akhmetshin

The modeling of complex radiation heat exchange in the system “Sun-atmosphere-solar thermal and electric stations” is considered. The structural scheme of solar radiation inflows to the heat-absorbing surface of solar thermal and electrical stations is discussed. Calculations of spectral intensities and the flux of solar radiation, taking into account the selectivity of molecular absorption of radiation by the ingredients of the gas phase of the atmosphere, scattering and absorption of radiation by atmospheric aerosol and clouds, taking into account the statistics of their distribution depending on the location of the station and the time of year. Modeling of anthropogenic impacts on the operation of solar thermal and electrical stations in connection with the capture of anthropogenic emissions of sols by clouds is performed. An assessment of the impact of economic activity on the work of promising solar thermal and electrical stations. The developed methods for calculating the spectral intensities and fluxes of short-wave and long-wave radiation on the underlying surface make it possible to calculate the efficiency of the functioning of solar hot water supply systems for any location and structural solution.


Author(s):  
Eelco J. Rohling

The Sun is the ultimate energy source for climate. The Sun radiates toward Earth at an almost constant intensity of about 1360 watts per square meter (W/ m2), as measured above the Earth ’s atmosphere. Most of this radiation takes place in the short ultra- violet and visible light wavelengths. We refer to it as incoming short- wave radiation (ISWR; the wavelengths are short because the Sun radiates at very high temperatures of about 5500°C). Earth is not a two- dimensional disk, but a 3- dimensional sphere. Its day- side faces the Sun and receives radiation, while its night- side is directed away from the Sun and does not receive solar radiation. As a result, the global average energy received from the Sun per square meter of Earth surface is the energy received by the day- side of Earth averaged over the surface area of the entire sphere. When we do the mathematics, this gives an average input of solar radiation into every square meter of Earth, at the top of the atmosphere, of 340 W/ m2 (Box 3.1). That is the value that things work out to when considering the ISWR from the Sun in a continuous and globally equally “smeared out” sense, and that is what matters when we are working out the balance between energy gained and lost by Earth (Box 3.2). Many people are puzzled by the fact that we talk only about energy from the Sun. They then especially wonder why we ignore heat input from the deep Earth, and in particular from volcanoes, which after all are very hot. But in spite of the spectacular shows of heat, steam, gases, and primordial mayhem that volcanoes put on display, they turn out to be almost negligible in terms of heat flow into the climate system. Compared with the global average solar energy gain of 340 W/ m2, recent assessments show that total heat outflow from the Earth’s interior is not even 0.09 W/ m2.


2013 ◽  
Vol 30 (7) ◽  
pp. 1576-1582 ◽  
Author(s):  
S. J. Lentz ◽  
J. H. Churchill ◽  
C. Marquette ◽  
J. Smith

Abstract Onset's HOBO U22 Water Temp Pros are small, reliable, relatively inexpensive, self-contained temperature loggers that are widely used in studies of oceans, lakes, and streams. An in-house temperature bath calibration of 158 Temp Pros indicated root-mean-square (RMS) errors ranging from 0.01° to 0.14°C, with one value of 0.23°C, consistent with the factory specifications. Application of a quadratic calibration correction substantially reduced the RMS error to less than 0.009°C in all cases. The primary correction was a bias error typically between −0.1° and 0.15°C. Comparison of water temperature measurements from Temp Pros and more accurate temperature loggers during two oceanographic studies indicates that calibrated Temp Pros have an RMS error of ~0.02°C throughout the water column at night and beneath the surface layer influenced by penetrating solar radiation during the day. Larger RMS errors (up to 0.08°C) are observed near the surface during the day due to solar heating of the black Temp Pro housing. Errors due to solar heating are significantly reduced by wrapping the housing with white electrical tape.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


Sign in / Sign up

Export Citation Format

Share Document