Two-scale modeling of unsaturated water flow in a double-porosity medium under axisymmetric conditions

2008 ◽  
Vol 45 (2) ◽  
pp. 238-251 ◽  
Author(s):  
Adam Szymkiewicz ◽  
Jolanta Lewandowska ◽  
Rafael Angulo-Jaramillo ◽  
Joanna Butlańska

In this paper the development and experimental validation of a numerical model of two-dimensional unsaturated flow in a double-porosity medium is presented. The model is based on the coupled formulation for flow in macro- and micropores obtained by homogenization. It was applied to simulate the axisymmetrical tension disk infiltration experiments that were carried out in a double-porosity medium. The physical model was a three-dimensional periodic structure, composed of porous spheres made of sintered clay and embedded in Hostun fine sand HN38. The hydraulic parameters of both porous materials were determined by inverse analysis of independent infiltration experiments performed on sand and sintered clay. The effective parameters of the double-porosity medium were calculated from the solution of the local boundary value problem, obtained from the homogenization procedure. The cumulative infiltration curve and the global dimensions of the humidified zone obtained from the numerical solution are in good agreement with the observations. Moreover, numerical simulations showed the existence of a narrow zone of local nonequilibrium that moves with the infiltration front. Upstream of this zone, the infiltration bulb is in the local equilibrium conditions.

2019 ◽  
Vol 6 (3) ◽  
pp. 269-283
Author(s):  
Nicolas Antoni

Abstract In structural analysis, it is of paramount importance to assess the level of plasticity a structure may experience under monotonic or cyclic loading as this may have a significant impact, particularly in fatigue analysis for singular areas. For efficient design analyses, it is often searched for a compromise in accuracy that consists in correcting a purely elastic analysis, generally simpler and faster to obtain compared to a full non-linear Finite Element (FE) analysis involving elastic-plastic behaviour, to estimate the actual elastic-plastic solution. There exists a great number of correction techniques in the literature among which the most famous and commonly used are Neuber and ESED energy-based methods. Nonetheless, both of them are known to provide respectively upper and lower bounds of the exact solution in most cases, with a relative deviation depending on the level of multiaxiality and on the amount of stress redistribution due to yielding. The new methodology presented in this paper is based on the well-known multiaxial Radial Return Method (RRM) revisited using effective parameters approach. By essence, it is fast and can be applied either to analytical elastic problems or to more complex three-dimensional elastic FE analyses. The accuracy of the proposed method is assessed by direct comparison with results from Neuber and ESED methods on various examples. It is also shown for each of them that this new method is very good agreement with the exact elastic-plastic solution. Highlights A new technique of purely elastic solution correction is presented and evaluated. The proposed method relies on the modification of Return Radial Method (RRM) considering effective parameters in lieu of initial elastic tensor. The obtained equation preserves the simplicity and efficiency of other well-known energy-based methods such as Neuber and ESED. It is shown on several examples that the proposed technique is in very good agreement with the exact or FE elastic-plastic solution, with very low relative deviation.


1978 ◽  
Vol 87 (1) ◽  
pp. 193-206 ◽  
Author(s):  
Tokuo Yamamoto ◽  
H. L. Koning ◽  
Hans Sellmeijer ◽  
Ep Van Hijum

The problem of the response of a porous elastic bed to water waves is treated analytically on the basis of the three-dimensional consolidation theory of Biot (1941). Exact solutions for the pore-water pressure and the displacements of the porous medium are obtained in closed form for the case of waves propagating over the poro-elastic bed. The theoretical results indicate that the bed response to waves is strongly dependent on the permeabilitykand the stiffness ratioG/K’, whereGis the shear modulus of the porous medium andK’is the apparent bulk modulus of elasticity of the pore fluid. The earlier solutions for pore-water pressure by various authors are given as the limiting cases of the present solution. For the limitsG/K′→ 0 ork→ ∞, the present solution for pressure approaches the solution of the Laplace equation by Putnam (1949). For the limitG/K′→ ∞, the present solution approaches the solution of the heat conduction equation by Nakamuraet al.(1973) and Moshagen & Tørum (1975).The theoretical results are compared with wave tank experimental data on pore-water pressure in coarse and fine sand beds which contain small amounts of air. Good agreement between theory and experiment is obtained.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


2021 ◽  
Vol 45 (3) ◽  
Author(s):  
C. M. Durnea ◽  
S. Siddiqi ◽  
D. Nazarian ◽  
G. Munneke ◽  
P. M. Sedgwick ◽  
...  

AbstractThe feasibility of rendering three dimensional (3D) pelvic models of vaginal, urethral and paraurethral lesions from 2D MRI has been demonstrated previously. To quantitatively compare 3D models using two different image processing applications: 3D Slicer and OsiriX. Secondary analysis and processing of five MRI scan based image sets from female patients aged 29–43 years old with vaginal or paraurethral lesions. Cross sectional image sets were used to create 3D models of the pelvic structures with 3D Slicer and OsiriX image processing applications. The linear dimensions of the models created using the two different methods were compared using Bland-Altman plots. The comparisons demonstrated good agreement between measurements from the two applications. The two data sets obtained from different image processing methods demonstrated good agreement. Both 3D Slicer and OsiriX can be used interchangeably and produce almost similar results. The clinical role of this investigation modality remains to be further evaluated.


Author(s):  
Masoud Forsat ◽  
Mohammad Taghipoor ◽  
Masoud Palassi

AbstractThe present research exposes the investigation on three-dimensional modeling of the single and twin metro tunnels for the case of the Tehran metro line. At first, simulation implemented on the comparison of the ground movements in the single and twin tunnels. Then the simulation has been performed on the influence of effective parameters of EPB-TBM on the surface settlements throughout excavation. The overcutting, shield conicity, grouting, and the final lining system modeled and the influence of face supporting pressure, grout injection pressure, as well as the clear distance of the tunnels, has been analyzed. The initial results showed a valid ground settlement behavior. The maximum settlements occurred at the end of the shield tail and it was higher in the single tunnel. The face supporting pressure had more effect on the surface settlement in comparison to the grout injection pressure. By increasing the face pressure in the single tunnel, the place of maximum settlement moved back while the grout pressure is insignificant for decreasing the settlements. Furthermore, the influence of the clear distance in the twin tunnels led to zero after the length of 30 m. Accordingly, for more distances, the tunnels must be examined independently and as two different single tunnels.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Sign in / Sign up

Export Citation Format

Share Document