Flow Pattern of Solid Particles in a Double Vortex Chamber

Author(s):  
A.I. Georgantas ◽  
T. Krepec ◽  
C.K. Kwok

An experimentally determined air flow pattern in a double vortex chamber is utilized to predict the flow pattern of inserted solid particles. The minimum (critical) particle size retained in the vortex chamber is established in relation to different operating parameters. In view of possible applications of the double vortex chamber in combustion technology, an evaluation of the performance of the system at combustion operating conditions is also made. Experimental evidence of the predicted particle flow pattern is obtained for both cold and hot running conditions.

Author(s):  
Xin Luan ◽  
Zhongli Ji ◽  
Longfei Liu ◽  
Ruifeng Wang

Rigid filters made of ceramic or metal are widely used to remove solid particles from hot gases at temperature above 260 °C in the petrochemical and coal industries. Pulse-jet cleaning of fine dust from rigid filter candles plays a critical role in the long-term operation of these filters. In this study, an experimental apparatus was fabricated to investigate the behavior of a 2050 mm filter candle, which included monitoring the variation of pressure dynamic characteristics over time and observing the release of dust layers that allowed an analysis of the cleaning performance of ISO 12103-1 test dusts with different particle size distributions. These results showed the release behavior of these dusts could be divided into five stages: radial expansion, axial crack, flaky release, irregular disruption and secondary deposition. The cleaning performance of smaller sized dust particles was less efficient as compared with larger sized dust particles under the same operating conditions primarily because large, flaky-shaped dust aggregates formed during the first three stages were easily broken into smaller, dispersed fragments during irregular disruption that forced more particles back to the filter surface during secondary deposition. Also, a “low-pressure and long-pulse width” cleaning method improved the cleaning efficiency of the A1 ultrafine test dust from 81.4% to 95.9%.


2006 ◽  
Vol 129 (2) ◽  
pp. 160-170 ◽  
Author(s):  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Nathan Siegel

A detailed three-dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid-particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two-band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray-tracing algorithm. Two kinds of solid-particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the gas velocity, temperature, particle solid volume fraction, particle outlet temperature, and cavity efficiency.


Author(s):  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Nathan Siegel

A detailed three dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray tracing algorithm. Two kinds of solid particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the particle and gas velocity, temperature, particle solid volume fraction, and cavity efficiency.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 399-400 ◽  
Author(s):  
L. Cingolani ◽  
M. Cossignani ◽  
R. Miliani

Statistical analyses were applied to data from a series of 38 samples collected in an aerobic treatment plant from November 1989 to December 1990. Relationships between microfauna structure and plant operating conditions were found. Amount and quality of microfauna groups and species found in activated sludge proved useful to suggest the possible causes of disfunctions.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 393-400 ◽  
Author(s):  
J.M. Garrido-Fernandez ◽  
R. Méndez ◽  
J.M. Lema ◽  
V. Lazarova

Three Circulating Floating Bed Reactors (CFBR) R1, R2 and R3 with 20% v/v of a plastic carrier with different size distribution were operated to study the effect of the particles size of the carrier on biomass accumulation and nitrification performance. Operating conditions were similar in the three systems: ammonia concentrations around 50 mg-N–NH4+/ L, ammonia loading rates up to 1.2 kg N–NH4+/m3·d and temperatures between 14 and 27°C. Accumulation of nitrite was observed until day 65th. This w as result both of the inhibition of nitrite oxidation by free ammonia until day 20th and the insignificant accumulation of a biomass with low nitrite oxidising capacity between days 20 and 65th. Ammonia conversion rate and removal efficiency were higher in the reactor with lower particle size, R3 (nitrification rate of 1.1 kg N–NH4+/m3·d and ammonia removal of 97% at 16°C), than in R2 or R1 (nitrification rate of 1.0 kg N–NH4+/m3·d and ammonia removal of 90% at 16°C). The better efficiency in R3 was obtained as a result of the higher specific surface of the biofilm developed. Biomass activity was similar in the three reactors (2.2 and 1.12 g N/g protein · d at 30 and 15°C, respectively). Both the biomass evolution with time and biomass retention in the systems was practically not influenced by the size of particle. Biomass concentration of 1.2 g protein/L was retained in the carrier and up to 20% of the newly produced biomass was retained in the CFBRs.


2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


2011 ◽  
Vol 356-360 ◽  
pp. 1994-1997 ◽  
Author(s):  
Shao Hai Wang

This graphite belongs to graphite schist deposits, the main mineral component is feldspar, quartz, diopside, amphibole, followed by mica, chlorite, calcite, pyrite, etc.; The average particle size of the mineral is 0.10 mm. After experimental evidence, the direct use of graphite mine tailings, ordinary cement, foamer and other materials for prepared foam concrete, and its performance fully meet the requirements of B07 density rate in JC/T 1062-2007 standard and the middle strength for the A2.5.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kefeng Xiao ◽  
Weiqiang Wang ◽  
Dedong Hu ◽  
Yanpeng Qu ◽  
Zhihui Hao ◽  
...  

An annular gap nozzle was applied in solution enhanced dispersion by supercritical fluids (SEDS) process to prepare cefquinome controlled size submicron particles so as to enhance their efficacy. Analysis results of orthogonal experiments indicated that the concentration of solution was the primary factor to affect particle sizes in SEDS process, and feeding speed of solution, precipitation pressure, and precipitation temperature ranked second to fourth. Meanwhile, the optimal operating conditions were that solution concentration was 100 mg/mL, feeding speed was 9 mL/min, precipitation pressure was 10 MPa, and precipitation temperature was 316 K. The confirmatory experiment showed that D50 of processed cefquinome particles in optimal operating conditions was 0.73 μm. Moreover, univariate effect analysis showed that the cefquinome particle size increased with the increase of concentration of the solution or precipitation pressure but decreased with the increase of solution feeding speed. When precipitation temperature increased, the cefquinome particle size showed highest point. Moreover, characterization of processed cefquinome particles was analyzed by SEM, FT-IR, and XRD. Analysis results indicated that the surface appearance of processed cefquinome particles was flakes. The chemical structure of processed cefquinome particles was not changed, and the crystallinity of processed cefquinome particles was a little lower than that of raw cefquinome particles.


Sign in / Sign up

Export Citation Format

Share Document