On diastereomeric perturbations

2000 ◽  
Vol 78 (6) ◽  
pp. 816-828 ◽  
Author(s):  
Christian Girard ◽  
Henri B Kagan

For more than a century, organic chemists have been playing in Nature's laboratory. Their first goal was to understand the organization of atoms in the living matter and then to reproduce it by synthesis. This quest gave rise to several efficient techniques to synthesise molecules; many of them still in use nowadays, as such or with little modifications. Even at the beginning of this journey, the chemists discovered that their methods were far from being as efficient as the ones used by Nature to produce substances. The natural molecules were chiral and there was even an enantiomer that was produced over the other;a lesson of perfection. This was another challenge for the chemists and they succeeded by first developing techniques to separate enantiomers and more recently reagents and reactions to produce only the desired stereoisomer. Asymmetric synthesis uses chiral auxiliaries, reagents or catalysts to create chirality into the desired compound. The common perception, as a minimum condition, was that the chiral substance used to perform such a transformation has to be of the highest enantiomeric purity to obtain a very high selectivity. The relation between the enantiomeric excesses of the chiral substance and the product was suggested to be linear. But there were a lot of surprises left in the laboratory. Who would have thought that an impure substance could give an enantiomeric excess in the product higher than its own purity? The molecules are acting in different ways in solution. Self-organization and aggregation can arise depending on the structure of the substance or its environment. Such phenomenon can generate deviations to the awaited behaviour of the molecules that can be observed in many cases. This article tries to present some examples of the historical reports of such peculiar behaviours, their influence on physico-chemical properties and the final discovery of the now well-known nonlinear effects in asymmetric synthesis.Key words: asymmetric synthesis, diastereomeric interactions, nonlinear effects.

Clay Minerals ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 525-537 ◽  
Author(s):  
U. Sohling ◽  
F. Ruf ◽  
K. Schurz ◽  
K. Emmerich ◽  
A. Steudel ◽  
...  

AbstractThe main physico-chemical properties of a new smectitic clay containing large amounts of amorphous material are reviewed and potential industrial applications of this type of clay are discussed. Due to a 34% amorphous material content (natural silica gel), the investigated clay has very high porosity and can be used as it is or in acid-impregnated form for oil bleaching or phosphate reduction in edible oil. In the field of biodiesel purification, the new clay can be used to remove, in particular, mono-, diglycerides and glycerol. The natural silica-smectite mixture is also suitable as a carrier for liquid ingredients, for example in animal feeds, and might serve as a partial or complete substitute for synthetic precipitated silicas. In the field of bioseparation processes, the clay can be used as an adsorbent for protein separation by means of cation exchange. Due to the suppressed swelling (compared with smectite alone), it can be packed in columns which can be regenerated.


2020 ◽  
Vol 12 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Amar Nath ◽  
P. P. Pande

Now-a-days synthetic polyelectrolytes are frequently used by the industries in the treatment of industrial effluents. Such materials have a variety of properties such as easily changeable structure as per the specific requirement, higher purity, highstability and have more efficiency than the natural polymers. These polymers do not add any solid residue in the sludge, exhibit no change in the physico-chemical properties of the treated water and therefore this water may be recycled. Polyacrylamide is a synthetic polyelectrolyte which is hydrophilic in nature and insoluble in organic solvents. It has very high affinity towards the suspended particles present in water. Therefore, polyacrylamide based polymers are highly effective for the flocculation of suspended contaminated particle present in the effluents. Polyacrylamide is very important polymer for wastewater treatment which enhances the flocculation potential by modification of its nature into non-ionic, anionic and cationic forms.


Author(s):  
S. Lesz ◽  
T. Tański ◽  
B. Hrapkowicz ◽  
M. Karolus ◽  
J. Popis ◽  
...  

Purpose: This paper explains mechanical synthesis which uses powders or material chunks in order to obtain phases and alloys. It is based on an example of magnesium powders with various additives, such as zinc, calcium and yttrium. Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD) method, scanning electron microscopy (SEM), determining particle size distributions with laser measuring, Vickers microhardness. Findings: The particle-size of a powder and microhardness value depend on the milling time. Research limitations/implications: Magnesium gained its largest application area by creating alloys in combination with other elements. Magnesium alloys used in various industry contain various elements e.g. rare-earth elements (REE). Magnesium alloys are generally made by casting processes. Consequently, the search for new methods of obtaining materials such as mechanical alloying (MA) offers new opportunities. The MA allows for the production of materials with completely new physico-chemical properties. Originality/value: Thanks to powder engineering it is possible to manufacture materials with specific chemical composition. These materials are characterized by very high purity, specified porosity, fine-grain structure, complicated designs. These are impossible to obtain with traditional methods. Moreover it is possible to refine the process even further minimalizing the need for finishing or machining, making the material losses very small or negligible. Furthermore material manufactured in such a way can be thermally or chemically processed without any problems.


2015 ◽  
Vol 670 ◽  
pp. 246-251 ◽  
Author(s):  
Aleksandra I. Makarycheva ◽  
Yury G. Slizhov

New packings based on Silochrome C80 modified with Cu (II), Co (II) and Ni (II) 8-oxyquinolinates were studied. Their sorption characteristics and chromatographic properties were investigated and the comparative evaluation of sorbents polarity was carried out by applying Rohrschneider-McReynolds coefficients system, thermodynamic data and using the solvation parameter model of Abraham. It was found that the nature of metal and complex structure have a decisive influence on the physico-chemical properties of the packings. Modified silica gels show high selectivity for gas chromatographic separation of oxygen containing and aromatic organic compounds.


2016 ◽  
Vol 13 (2) ◽  
pp. 197-206
Author(s):  
PR Sheel ◽  
MAH Chowdhury ◽  
M Ali ◽  
MA Mahamud

The soil physico-chemical properties have been disturbed due to long continued intensive agricultural practices. Under this situation we are approaching rapidly to a very strong future challenge in sustaining the quality of our soil. This study was conducted to evaluate the physico-chemical properties of the selected soil series. The area covered Mymensingh and Jamalpur districts of Bangladesh. Soil samples were collected randomly from different profiles of Lokdeo, Tarakanda, Silmondi and Melandah soil series during March-May, 2014 and analysed. All soils were acidic and textural classes were sandy loam, silt loam, loam, and clay loam. Organic matter and total N contents low to very low. Available S content in the upper layers of most soils were medium to optimum and in the deeper layer low to medium. The exchangeable K, Ca and Na contents were also low. The upper layers of all the locations contained higher amounts of available Zn. The available Cu and Fe contents of most soils were very high. The soils of all locations contained very high amount of available Mn except the deeper layers (45-75 cm) of Melandah which contained optimum amount of available Mn. Soil pH showed negative correlation with total N and available S. Total N showed positive correlation with soil OM, available Cu and available S. There was positive correlation between available S and available Mn.J. Bangladesh Agril. Univ. 13(2): 197-206, December 2015


2021 ◽  
Vol 11 (11) ◽  
pp. 4989
Author(s):  
Matej Pospiech ◽  
Zdeňka Javůrková ◽  
Pavel Hrabec ◽  
Helena Čížková ◽  
Dalibor Titěra ◽  
...  

Geographical and botanical origin of honeys can be characterized on the basis of physico-chemical composition, sensory properties and on the basis of melissopalynological analysis. No comprehensive description of the characteristics of Czech honey has been published so far. This study provides insights that are important for correct classification. The study analysed 317 samples of authentic honey from randomly selected localities. Due to the diversity of the landscape, the typical honey of the region is blend honey with a predominance of blossom honey. According to the pollen profile and electric conductivity, the honeys were sorted into the following: Brassica honey (BH), Floral honey (FH), Fruit tree honey (PH), Honeydew (HD), Lime tree honey (LH), Robinia pseudoacacia honey (RH), and Trifolium honey (TH). Physico-chemical properties, including higher carbohydrates, were determined for the honeys and their pollen profiles were examined. The physico-chemical properties and pollen profile are partially in compliance with the description of European monofloral honeys, except for RH and TH. Although they had the highest proportion of acacia pollen, amounting to >10% of all the Czech honeys, these RH honeys differ from the European standard, so they cannot be considered acacia honey. Further, PH honeys and FH polyfloral honeys were described. Most honeys contained a significant proportion of rapeseed pollen, which is one of the common agricultural crops grown in the Czech Republic. All the analysed honeys met the parameters defined by the legislation. Due to direct on-site sampling, honeys were characterized by a low 5-(hydroxymethyl)furfural (HMF) content (3.0 mg/kg) and high diastase activity (24.4 DN). Honeydew honeys had the highest proportion of higher carbohydrates, primarily of Melezitose (4.8 g/100 g) and Trehalose (1.3 g/100 g). The presence of higher carbohydrates was also confirmed in LH for Maltose (4.6 g/100 g) and Turanose (2.4 g/100 g).


Author(s):  
Anne N. Karuma

Four soil profiles (Yala, Galana, Baringo and Bondo) that represent different ecology, physiography and pedological variability were described to study their morphology, soil physico-chemical characteristics and to classify them using two internationally known soil classification systems. Soil samples were taken from designated pedogenic horizons for physical and chemical analysis in the laboratory. These soils are deep to very deep (> 110 cm) and well-drained except in Galana which was imperfectly drained, with varying textures. In Bondo, the soils are moderately acid (pH 5.6 – 6). In Baringo, the soil profile is acidic (< 5.0) while in Galana moderately alkaline (pH 7.3 - 8.3) and Yala soils are moderate to strongly acid (5.1 - 5.7). The organic carbon (< 0.6%) and organic matter levels (1 – 2%) were low and decreased down the profiles in all. The soils have low to moderate fertility. The base saturation of the studied soils is rated as very high (> 80%) in Galana and Baringo and low (< 50%) in Yala and Bondo pedons. The soils are non-saline as indicated by the low values of electrical conductivity (< 1.7dS/m) in the pedons. The soils are non-sodic (ESP < 6%) in Bondo and Yala, however moderately sodic (ESP 11-15%) in Galana and Baringo. Ochric horizon was the main diagnostic epipedon while ferralic, argillic and cambic horizons were the diagnostic B horizons. According to USDA Soil Taxonomy, the soils were classified as Typic Haplustox (Yala), Typic Haplocalcids (Galana), Typic Eutrudepts (Baringo) and Plinthic Haplustults (Bondo) corresponding to Haplic Ferralsols, Luvic Calcisols, Haplic Cambisol and Cutanic Plinthic Acrisols in the WRB for Soil Resources. The general fertility of the soils of the areas is discussed highlighting their potentials and constraints.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


Sign in / Sign up

Export Citation Format

Share Document