scholarly journals THE REACTIONS OF ELECTRONICALLY EXCITED NITRIC OXIDE MOLECULES WITH HYDROCARBONS

1963 ◽  
Vol 41 (5) ◽  
pp. 1207-1222 ◽  
Author(s):  
O. P. Strausz ◽  
H. E. Gunning

The reactions of NO(4II) molecules, generated by Hg 6(3P1) photosensitization, with methane, ethane, propane, neopentane, and benzene have been studied at room temperature in a circulatory system. In the case of ethane the following reaction products were identified: N2, N2O, H2O, NO2, CO, CO2, C2H4, acetaldehyde, nitroethane, ethyl nitrite, ethyl nitrate, nitroethylene, nitromethane, methyl nitrite, methyl nitrate, formaldehyde. For hydrocarbon consumption, under comparable conditions, the following quantum yield values were established: [Formula: see text]. The most probable primary process may be represented by the sequence[Formula: see text] [Formula: see text]Alkyl free radicals catalyze the chain disproportionation of nitric oxide at room temperature according to the stoichiometric equation[Formula: see text]A minimal value of 12 was established for the average chain length.


Methyl nitrate (CH 3 ONO 2 ) is the most explosive of the nitrate esters, and previous studies have been confined mainly to the slow thermal decomposition, and to the vapour phase explosion at low pressures in closed vessels. A stationary decomposition flame has now been maintained and studied spectrographically. A t low pressures the zones of reaction are clearly separated. From the early stages of the flame strong formaldehyde bands are emitted. This decomposition flame has been successfully simulated in artificial mixtures of methyl nitrite with oxygen. The results obtained are in accord with the preliminary fission of the nitrate molecule in the pre-heat zone of the flame: CH 3 ONO 2 →CH 3 O + NO 2 . The combustion flame of m ethyl nitrate with oxygen, nitric oxide and nitrogen dioxide has also been examined at low pressures. At atmospheric pressure, m ethyl nitrite (CH 3 ONO) has been found to support a decomposition flame of very small burning velocity. However, the combustion of m ethyl nitrite with oxygen at atmospheric pressure is an extremely fast and vigorous flame. It has been observed in both pre-mixed and diffusion systems and information about the changes occurring in it have been obtained by absorption and emission spectroscopy. All the experimental results may be interpreted in terms of two general principles: the reluctance of nitric oxide to react except at high temperatures and pressures and the frequent occurrence in flames of extensive pyrolytic reactions before the main reaction zone is reached.



1955 ◽  
Vol 33 (5) ◽  
pp. 843-848
Author(s):  
T. M. Rohr ◽  
W. Albert Noyes Jr.

The addition of ethane to nitrogen dioxide either during exposure to radiation transmitted by pyrex, or afterwards, reduces the amount of oxygen formed. At room temperature this is apparently due to the effectiveness of ethane in promoting the reverse reaction of nitric oxide and oxygen to form nitrogen dioxide. At temperatures over 100° there is a reaction which uses oxygen atoms produced in the primary process. Nitroethane (or nitrosoethane) is formed along with carbon monoxide, carbon dioxide, and some methane. The results suggest that acetaldehyde is an intermediate, but acetaldehyde could not be detected because it would react thermally with nitrogen dioxide. It is not possible to give a complete explanation of the results, but suggestions can be made which might form the basis for later work.



1963 ◽  
Vol 41 (3) ◽  
pp. 763-769 ◽  
Author(s):  
Arthur R. Knight ◽  
Harry E. Gunning

The reaction of isopropanol vapor with Hg 6(3P1) atoms in the presence of nitric oxide has been investigated in a static system at room temperature as a function of exposure time. In addition to the major products hydrogen, pinacol, and acetone found in the pure substrate reaction, the new products isopropyl nitrite, nitrous oxide, and nitrogen were observed. The effect on the reaction of the inert gas carbon tetrafluoride was also studied.Evidence is adduced for the production of excited isopropoxy radicals in the primary process, and the rise in the nitrite and acetone yields, observed upon increasing the added inert gas pressure, is ascribed to quenching of these excited species.The nitrite produced in the decomposition of Me2CDOH was found to be ca. 98% Me2CDONO, dictating its formation from the isopropoxy radical and not from Me2COH.A nitrite-producing dark reaction was observed when high pressures of CF4 were added and the reaction could be prevented only by measures designed to exclude trace quantities of NO2 from the reaction vessel.



2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.



2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.



2015 ◽  
Vol 122 ◽  
pp. 513-520 ◽  
Author(s):  
Jason E. Ham ◽  
Stephen R. Jackson ◽  
Joel C. Harrison ◽  
J.R. Wells


2020 ◽  
Author(s):  
Naim Sedira ◽  
João Castro-Gomes

This study determines the effect of ground granulated blast furnace slag (GGBFS) and metakaolin (MK) on the microstructural properties of the tungsten mining waste-based alkali-activated binder (TMWM). During this investigation, TMWM was partially replaced with 10 wt.% GGBFS and 10 wt.% MK to improve the microstructure of the binder. In order to understand the effect of the substitutions on the microstructure, two pastes were produced to make a comparative study between the sample contain 100% TMWM and the ternary precursors. Both precursors were activated using a combination of alkaline activator solutions (sodium silicate and sodium hydroxide) with the ratio of 1:3 (66.6 wt.% sodium silicate combined with 33.33 wt.% of NaOH 8M). The alkali-activated mixes were cured in oven at temperature of 60 °C in the first day and at room temperature for the next 27 days. The reaction products N-A-S-H gel and (N,M)-A-S-H gel resulted from the alkaline activation reaction process. In addition, a formation of natrite (Na2CO3) with needles shape occurred as a reaction product of the fluorescence phenomena. However, a dense matrix resulted from the alkline activation of the ternary precursors containg different gels such as N-A-S-H, C-A-S-H and (N,M)-C-A-S-H gel, these results were obtained through SEM-EDS analyses, as well FTIR tests. Keywords: Mining Waste, Alkali-activated, Microstructure, Slag, Metakaolin



2006 ◽  
Vol 249-250 ◽  
pp. 385-391 ◽  
Author(s):  
Voislav Blagojevic ◽  
Eric Flaim ◽  
Michael J.Y. Jarvis ◽  
Gregory K. Koyanagi ◽  
Diethard K. Bohme


1949 ◽  
Vol 22 (1) ◽  
pp. 1-7
Author(s):  
M. L. Selker

Abstract The work described here is an extension of the study of the reaction of methyl iodide with sulfur compounds originally begun with the purpose of using such data in determining the sulfur linkage in vulcanized rubber. A previous paper dealt with the reactions of methyl iodide with propanethiol, propyl sulfide, propyl disulfide, allyl sulfide, and thiophene. This article adds to the list, n-butyl methallyl sulfide, allyl disulfide, allyl tetrasulfide, n-propyl tetrasulfide, and trithiane. The removal of combined sulfur from vulcanized rubber as trimethylsulfonium iodide on treatment with methyl iodide at room temperature was persuasive evidence of the presence of sulfide sulfur linked to allylic type residues. The evidence offered, however, did not constitute exclusive proof because it was not known whether still other types of sulfur linkage would also yield trimethylsulfonium iodide. To shed more light on this question, the sulfur linkages most likely to occur in vulcanizates—the allyl-alkyl monosulfide, diallyl and dialkyl di- and polysulfide—were investigated. The trithiane reaction is of interest mostly from the point of view of the reaction of overcured stocks or secondary reaction products stemming from the original polysulfides. The reactions were carried out using the method described in a previous paper.



2007 ◽  
Vol 361-363 ◽  
pp. 787-790
Author(s):  
Sabina Beranič Klopčič ◽  
Irena Pribošič ◽  
Tomaž Kosmač ◽  
Ute Ploska ◽  
Georg Berger

The reactivity of CaTi4(PO4)6 (CTP) with alumina and yttria-stabilized zirconia (Y-TZP) ceramics was studied. CTP powder was synthesized and composites with commercial alumina or zirconia matrices containing 10 wt% of CTP were prepared. They were sintered at different temperatures and characterized using XRD, SEM, and EDX analyses. The results showed that the alumina/CTP and Y-TZP/CTP composites start to react below 1000 °C. In the alumina/CTP composite the first reaction product, detected at 970 °C, was AlPO4. At temperatures above 1280 °C TiO2 and CaTiO3 were also formed and no CTP peaks could be detected using XRD analysis. The composite sintered at 1500 °C consisted of Al2O3 matrix, AlPO4, TiO2, CaTiO3 and Al2TiO5. The reaction products formed in the Y-TZP/CTP composite at 970 °C were TiO2 and Ca2Zr7O16. At higher sintering temperatures, 1280 °C and above, CTP was no longer present, Ca2Zr7O16 decomposed, forming CaO2 and ZrO2, and Y2O3 was consumed to form YPO4. Consequently, upon cooling to room temperature the matrix phase transformed to monoclinic ZrO2. Based on these results it can be concluded that CTP is not a suitable bioactive second phase for the fabrication of CTP composites with alumina or zirconia matrices.



Sign in / Sign up

Export Citation Format

Share Document