The Reactivity of CaTi4(PO4)6 with Alumina and Y-TZP Ceramics

2007 ◽  
Vol 361-363 ◽  
pp. 787-790
Author(s):  
Sabina Beranič Klopčič ◽  
Irena Pribošič ◽  
Tomaž Kosmač ◽  
Ute Ploska ◽  
Georg Berger

The reactivity of CaTi4(PO4)6 (CTP) with alumina and yttria-stabilized zirconia (Y-TZP) ceramics was studied. CTP powder was synthesized and composites with commercial alumina or zirconia matrices containing 10 wt% of CTP were prepared. They were sintered at different temperatures and characterized using XRD, SEM, and EDX analyses. The results showed that the alumina/CTP and Y-TZP/CTP composites start to react below 1000 °C. In the alumina/CTP composite the first reaction product, detected at 970 °C, was AlPO4. At temperatures above 1280 °C TiO2 and CaTiO3 were also formed and no CTP peaks could be detected using XRD analysis. The composite sintered at 1500 °C consisted of Al2O3 matrix, AlPO4, TiO2, CaTiO3 and Al2TiO5. The reaction products formed in the Y-TZP/CTP composite at 970 °C were TiO2 and Ca2Zr7O16. At higher sintering temperatures, 1280 °C and above, CTP was no longer present, Ca2Zr7O16 decomposed, forming CaO2 and ZrO2, and Y2O3 was consumed to form YPO4. Consequently, upon cooling to room temperature the matrix phase transformed to monoclinic ZrO2. Based on these results it can be concluded that CTP is not a suitable bioactive second phase for the fabrication of CTP composites with alumina or zirconia matrices.

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3358 ◽  
Author(s):  
Hang Chen ◽  
Guangbao Mi ◽  
Peijie Li ◽  
Xu Huang ◽  
Chunxiao Cao

In this study, graphene-oxide (GO)-reinforced Ti–Al–Sn–Zr–Mo–Nb–Si high-temperature titanium-alloy-matrix composites were fabricated by powder metallurgy. The mixed powders with well-dispersed GO sheets were obtained by temperature-controlled solution mixing, in which GO sheets adsorb on the surface of titanium alloy particles. Vacuum deoxygenating was applied to remove the oxygen-containing groups in GO, in order to reduce the introduction of oxygen. The compact composites with refined equiaxed and lamellar α phase structures were prepared by hot isostatic pressing (HIP). The results show that in-situ TiC layers form on the surface of GO and GO promotes the precipitation of hexagonal (TiZr)6Si3 particles. The composites exhibit significant improvement in strength and microhardness. The room-temperature tensile strength, yield strength and microhardness of the composite added with 0.3 wt% GO are 9%, 15% and 27% higher than the matrix titanium alloy without GO, respectively, and the tensile strength and yield strength at 600 °C are 3% and 21% higher than the matrix alloy. The quantitative analysis indicates that the main strengthening mechanisms are load transfer strengthening, grain refinement and (TiZr)6Si3 second phase strengthening, which accounted for 48%, 30% and 16% of the improvement of room-temperature yield strength, respectively.


1978 ◽  
Vol 100 (2) ◽  
pp. 195-199 ◽  
Author(s):  
W. J. Mills

The elastic-plastic fracture toughness (JIc) response of precipitation strengthened Alloy A-286 has been evaluated by the multi-specimen R-curve technique at room temperature, 700 K (800°F) and 811 K (1000°F). The fracture toughness of this iron-base superalloy was found to decrease with increasing temperature. This phenomenon was attributed to a reduction in the materials’s strength and ductility at elevated temperatures. Electron fractographic examination revealed that the overall fracture surface micromorphology, a duplex dimple structure coupled with stringer troughs, was independent of test temperature. In addition, the fracture resistance of Alloy A-286 was found to be weakened by the presence of a nonuniform distribution of second phase particles throughout the matrix.


2011 ◽  
Vol 492 ◽  
pp. 238-241
Author(s):  
Chong Qing Huang ◽  
M. Chen ◽  
X.A. Mei ◽  
Y.H. Sun ◽  
J. Liu

Bi2WTi3O12 ceramics are fabricated by conventional solid-state reaction process. XRD analysis reveals that Bi2WO6 is the main phase and Bi4Ti3O12 is the second phase. With increasing temperature the sample first appears metallic behavior, then strong electrical fluctuations above 100°C, and finally exhibits stable nonlinear properties characterized by semiconductivity above 300°C at low field (E ≤ 100V/mm). The Arrhenius law for electrical conductivity by thermal activation is not suitable to explain the anomalous results. Based on the phase transition of tungsten trioxide from room temperature to about 300°C, the electrical properties of Bi2WTi3O12 ceramics can be explained.


MRS Advances ◽  
2017 ◽  
Vol 2 (13) ◽  
pp. 747-752 ◽  
Author(s):  
Sungtae Kim ◽  
Justin Dean ◽  
Jandi Knox ◽  
Leslie Kirkes ◽  
Je-Hun Jang

ABSTRACTWhile conducting siderite (FeCO3) solubility experiments in NaCl-Na2CO3 brines, evidence for a second phase was detected. Experiments, in which synthesized siderite was reacted with high ionic strength (0.18 – 7.5 m) solutions at room temperature and high pH (>10), were conducted in a glovebox. As the aging time of siderite-bearing experiments increased, the pH of the solution decreased, signaling formation of a hydroxyl-bearing phase. Decreasing pH values are interpreted to indicate that a hydroxyl-bearing phase, such as chukanovite, is the reaction controlling solid in the solid assemblage. Chukanovite was tentatively identified by XRD analysis. We set out, therefore, to determine the thermodynamic stability of chukanovite under the experimental conditions. Aqueous thermodynamic model parameters were determined with experimentally analyzed Fe(II) solubility data, and subsequently yielded a proposed formation free energy of chukanovite (-1149.8 kJ/mol).


2014 ◽  
Vol 788 ◽  
pp. 58-63 ◽  
Author(s):  
Shi Bo Fan ◽  
Jian Peng ◽  
Ming Zhou ◽  
Kai Cui ◽  
Quan Li

In this paper, the effects of Ce addition on the microstructure and mechanical properties of the cast and extruded ZM21 magnesium alloy were investigated by OM, XRD, SEM and tensile test at room temperature. It was found that with increase of Ce content, the Mg-Ce and Mg-Zn phases which gather in dendritic gap as second phases increase gradually, and form a network structure finally, which becomes thicker due to serious segregation. Meanwhile, Most of Ce in the extruded ZM21 magnesium alloy is in the forms of second phases, and is broken and dispersed in the matrix alloy during the plastic deformation. With the increase of Ce content, the quantity of the second phase increases, and both the tensile strength and the elongation of ZM21 alloys decrease firstly and then increase. When the content of Ce is 0.57%, the elongation barely reaches the level of ZM21 magnesium alloy. After extrusion, both the tensile and yield strength have been greatly improved.


2018 ◽  
Vol 16 (37) ◽  
pp. 7-14
Author(s):  
Ghuson H. Mohamed

Cadmium oxide thin films were prepared by D.C magnetron plasma sputtering using different voltages (700, 800, 900, 1000, 1100 and 1200) Volt. The Cadmium oxide structural properties using XRD analysis for just a voltage of 1200 volt at room temperature after annealing in different temperatures (523 and 623) K were studied .The results show that the films prepared at room temperature have some peaks belong to cadmium element along the directions (002), (100), (102) and (103) while the other peaks along the directions of (111), (200) and (222) belong to cadmium oxide. Annealed samples display only cadmium oxide peaks. Also, the spectroscopic properties of plasma diagnostic for CdO thin films were determined and the results show that the electron temperature and electron density increase with increasing of sputtered voltage.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


Sign in / Sign up

Export Citation Format

Share Document