Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1−xCux bulk; x = 0.1, 0.3, 0.5, 0.7

2018 ◽  
Vol 32 (26) ◽  
pp. 1830009 ◽  
Author(s):  
Tran Quoc Tuan ◽  
Nguyen Trong Dung

This paper studies the effects of heating rate 4 × 10[Formula: see text] K/s, 4 × 10[Formula: see text] K/s, 4 × 10[Formula: see text] K/s; impurity concentration of Cu on Ni[Formula: see text]Cu[Formula: see text] bulk with x = 0.1, x = 0.3, x = 0.5, x = 0.7; atom number (N), N = 4000 atoms, 5324 atoms, 6912 atoms, 8788 atoms at temperatures (T), T = 300 K; N = 6912 atoms at T = 300 K, 400 K, 500 K, 600 K, 700 K, 800 K; N = 6912 atoms at T = 600 K after time annealing temperature (t), t = 500 ps on the structure, crystallization temperature and crystallization process of Ni[Formula: see text]Cu[Formula: see text] bulk by molecular dynamics (MD) method with interactive embedding Sutton–Chen (ST) and periodic boundary conditions. The structural characteristics were analyzed through radial distribution function (RDF), energy total (E[Formula: see text]), size (l) and common neighborhood analysis (CNA) method; temperature (T), crystallization temperature (T[Formula: see text]), crystallization process through relationship between E[Formula: see text], T. The results showed Ni[Formula: see text]Cu[Formula: see text] bulk and links Ni–Ni, Ni–Cu, Cu–Cu always exist in 03 types structures: FCC, HCP, Amor. When time annealing temperature increases then Ni[Formula: see text]Cu[Formula: see text] bulk moves from a crystalline state to an amorphous state. When increases impurity concentration of Cu in Ni[Formula: see text]Cu[Formula: see text] bulk, then the structure unit number FCC, HCP decreases and then increases, structure unit number Amor increases and then decreases. When atom number (N) increases, decreasing T and increasing time annealing temperature lead to structure unit number FCC, HCP increases, Amor decreases and structural, crystallization temperature, crystallization process of Ni[Formula: see text]Cu[Formula: see text] bulk change.

2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Dung Nguyen Trong ◽  
Van Cao Long ◽  
Ştefan Ţălu

This paper studies the influence of factors such as heating rate, atomic number, temperature, and annealing time on the structure and the crystallization process of NiAu alloy. Increasing the heating rate leads to the moving process from the crystalline state to the amorphous state; increasing the temperature (T) also leads to a changing process into the liquid state; when the atomic number (N), and t increase, it leads to an increased crystalline process. As a result, the dependence between size (l) and atomic number (N), the total energy of the system (Etot) with N as l~N−1/3, and −Etot always creates a linear function of N, glass temperature (Tg) of the NiAu alloy, which is Tg = 600 K. During the study, the number of the structural units was determined by the Common Neighborhood Analysis (CNA) method, radial distribution function (RDF), size (l), and Etot. The result shows that the influencing factors to the structure of NiAu alloy are considerable.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Carmen Albano ◽  
José Papa ◽  
Miren Ichazo ◽  
Jeanette González ◽  
Carmen Ustariz

Abstract The non-isothermal behaviour of crystallization of polypropylene (PP) and its talc-filled composites was investigated by means of differential scanning calorimetry. Different analytical methods were used to describe the crystallization process. According to the behaviour of crystallization temperature, crystallization activation energy and crystallization parameters and coefficient, talc results in an increase in PP crystallization rate and in a decrease in total energy opposing to homogeneous crystallization. Velisaris-Seferis’ kinetic equation was found to describe reasonably well the non-isothermal behaviour of crystallization of PP and its filled composites.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1024
Author(s):  
Jingjing Peng ◽  
Changshan Hao ◽  
Hongyan Liu ◽  
Yue Yan

Highly transparent indium-free multilayers of TiO2/Cu/TiO2 were obtained by means of annealing. The effects of Cu thickness and annealing temperature on the electrical and optical properties were investigated. The critical thickness of Cu mid-layer with optimal electrical and optical properties was 10 nm, with the figure of merit reaching as high as 5 × 10−3 Ω−1. Partial crystallization of the TiO2 layer enhanced the electrical and optical properties upon annealing. Electrothermal experiments showed that temperatures of more than 100 °C can be reached at a heating rate of 2 °C/s without any damage to the multilayers. The experimental results indicate that reliable transparent TiO2/Cu/TiO2 multilayers can be used for electrothermal application.


2007 ◽  
Vol 14 (01) ◽  
pp. 141-145
Author(s):  
Q. Y. ZHANG ◽  
S. W. JIANG ◽  
Y. R. LI

The rapid thermal annealing (RTA) process was adapted to crystallize the amorphous ( Ba,Sr ) TiO 3 thin films prepared on Si (111) substrates by RF magnetic sputtering deposition. The effect of annealing temperature, heating rate and duration time on crystallization was studied through X-ray diffraction and atomic force microscopy. The result shows that the crystallinity and grain size were strongly dependent on the temperature, heating rate, and duration time. Higher heating rate leads to smaller grain size. In high heating rate, the grain size shows different dependence of temperature from that of low heating rate. For a heating rate of 50°C/s, the grain size decreased with temperature increasing below 700°C, while after that temperature, the grain size increased slightly with the temperature increasing. At a certain temperature, the crystallinity and surface roughness improved with increase in annealing time, while grain size changed little. The effect of rapid heating rate on the nucleation and grain growth has been discussed, which contributes to the limited grain size of the annealed ( Ba,Sr ) TiO 3 thin films.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


1975 ◽  
Vol 53 (22) ◽  
pp. 2481-2484 ◽  
Author(s):  
J. B. Webb ◽  
D. E. Brodie

The crystallization of amorphous zinc telluride (a-ZnTe) has been studied as a function of temperature in the range 350 K < T < 390 K. The crystallization process is thermally activated with an activation energy of 1.6 eV. The time for the onset of significant crystallization at room temperature for films of air-annealed a-ZnTe is found to be ~100 years. The study of the crystallization process is essential in order to determine the maximum time allowed for a measurement to be performed at a given temperature on a sample of amorphous material without significantly altering its amorphous state.


1997 ◽  
Vol 12 (9) ◽  
pp. 2255-2261 ◽  
Author(s):  
Zs. Czigány ◽  
G. Radnóczi ◽  
K. Järrendahl ◽  
J-E. Sundgren

The intermixing and crystallization of amorphous Si/Ge multilayers (with individual layer thickness between 1.5 and 20 nm) and SiGe alloys produced by dc magnetron sputtering have been studied by cross-sectional transmission electron microscopy and x-ray diffraction. Measurement of the crystallization temperature as a function of the Si content showed that multilayers and alloys with equal composition crystallized at the same temperature. This implies that intermixing precedes crystallization in the multilayers. Close to the crystallization temperature, formation of Kirkendall voids was observed in the short-period Si/Ge multilayers. These voids were found at positions corresponding to the original Si layers, indicating that Si diffuses faster in amorphous Ge than Ge in amorphous Si. The Ge layers in short-period Si/Ge multilayers retained their amorphous state to much higher temperatures than thick amorphous Ge layers. This is shown to be due to inhibition of nucleation by the presence of the layer interfaces. A lower estimate for the Si diffusion constant in crystalline Ge is also determined.


Sign in / Sign up

Export Citation Format

Share Document