ARCHITECTURES AND FPGA IMPLEMENTATIONS OF THE 64-BIT MISTY1 BLOCK CIPHER

2006 ◽  
Vol 15 (06) ◽  
pp. 817-831 ◽  
Author(s):  
P. KITSOS ◽  
M. D. GALANIS ◽  
O. KOUFOPAVLOU

In this paper, we present two alternative architectures and FPGA implementations of the 64-bit NESSIE proposal, MISTY1 block cipher. The first architecture is suitable for applications with high-performance requirements. A throughput of up to 12.6 Gbps can be achieved at a clock frequency of 168 MHz. The main characteristic of this architecture is that uses RAM blocks embedded in modern FPGA devices in order to implement the S-boxes defined in the block cipher algorithm. The second architecture can be used in implementing applications on area-constrained systems. It utilizes feedback logic and inner pipeline with negative edge-triggered register. This technique shortens the critical path, without increasing the latency of the MISTY1 algorithm execution. Compared with an implementation without inner pipeline, performance improvement of 97% is achieved. The measured throughput of the second architecture implementation is 561 Mbps at 79 MHz.

2021 ◽  
Vol 6 (1) ◽  
pp. 188-193
Author(s):  
Dr.V.J. Arulkarthick

Light weight cryptography has been a prominent sector in exploring the cryptanalytics in contemporary world. In this paper, an elevated production capable structure and pliant implementations of hardware by SPECK, which is a lightly weighted block cipher is presented. This lightly weighted SPECK can be accustomed to diminish the retardation of critical path, a tree structure for the realization of Sklansky adder which is an efficient parallel prefix adder operation is used.


Author(s):  
Deepika Bansal ◽  
Bal Chand Nagar ◽  
Brahamdeo Prasad Singh ◽  
Ajay Kumar

Background & Objective: In this paper, a modified pseudo domino configuration has been proposed to improve the leakage power consumption and Power Delay Product (PDP) of dynamic logic using Carbon Nanotube MOSFETs (CN-MOSFETs). The simulations for proposed and published domino circuits are verified by using Synopsys HSPICE simulator with 32nm CN-MOSFET technology which is provided by Stanford. Methods: The simulation results of the proposed technique are validated for improvement of wide fan-in domino OR gate as a benchmark circuit at 500 MHz clock frequency. Results: The proposed configuration is suitable for cascading of the high performance wide fan-in circuits without any charge sharing. Conclusion: The performance analysis of 8-input OR gate demonstrate that the proposed circuit provides lower static and dynamic power consumption up to 62 and 40% respectively, and PDP improvement is 60% as compared to standard domino circuit.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 169
Author(s):  
Mengcheng Wang ◽  
Shenglin Ma ◽  
Yufeng Jin ◽  
Wei Wang ◽  
Jing Chen ◽  
...  

Through Silicon Via (TSV) technology is capable meeting effective, compact, high density, high integration, and high-performance requirements. In high-frequency applications, with the rapid development of 5G and millimeter-wave radar, the TSV interposer will become a competitive choice for radio frequency system-in-package (RF SIP) substrates. This paper presents a redundant TSV interconnect design for high resistivity Si interposers for millimeter-wave applications. To verify its feasibility, a set of test structures capable of working at millimeter waves are designed, which are composed of three pieces of CPW (coplanar waveguide) lines connected by single TSV, dual redundant TSV, and quad redundant TSV interconnects. First, HFSS software is used for modeling and simulation, then, a modified equivalent circuit model is established to analysis the effect of the redundant TSVs on the high-frequency transmission performance to solidify the HFSS based simulation. At the same time, a failure simulation was carried out and results prove that redundant TSV can still work normally at 44 GHz frequency when failure occurs. Using the developed TSV process, the sample is then fabricated and tested. Using L-2L de-embedding method to extract S-parameters of the TSV interconnection. The insertion loss of dual and quad redundant TSVs are 0.19 dB and 0.46 dB at 40 GHz, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-20
Author(s):  
Gongyu Wang ◽  
Greg Stitt ◽  
Herman Lam ◽  
Alan George

Field-programmable gate arrays (FPGAs) provide a promising technology that can improve performance of many high-performance computing and embedded applications. However, unlike software design tools, the relatively immature state of FPGA tools significantly limits productivity and consequently prevents widespread adoption of the technology. For example, the lengthy design-translate-execute (DTE) process often must be iterated to meet the application requirements. Previous works have enabled model-based, design-space exploration to reduce DTE iterations but are limited by a lack of accurate model-based prediction of key design parameters, the most important of which is clock frequency. In this paper, we present a core-level modeling and design (CMD) methodology that enables modeling of FPGA applications at an abstract level and yet produces accurate predictions of parameters such as clock frequency, resource utilization (i.e., area), and latency. We evaluate CMD’s prediction methods using several high-performance DSP applications on various families of FPGAs and show an average clock-frequency prediction error of 3.6%, with a worst-case error of 20.4%, compared to the best of existing high-level prediction methods, 13.9% average error with 48.2% worst-case error. We also demonstrate how such prediction enables accurate design-space exploration without coding in a hardware-description language (HDL), significantly reducing the total design time.


Author(s):  
Mr.M.V. Sathish ◽  
Mrs. Sailaja

A new architecture of multiplier-andaccumulator (MAC) for high-speed arithmetic. By combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since the accumulator that has the largest delay in MAC was merged into CSA, the overall performance was elevated. The proposing method CSA tree uses 1’s-complement-based radix-2 modified Booth’s algorithm (MBA) and has the modified array for the sign extension in order to increase the bit density of the operands. The proposed MAC showed the superior properties to the standard design in many ways and performance twice as much as the previous research in the similar clock frequency. We expect that the proposed MAC can be adapted to various fields requiring high performance such as the signal processing areas.


Food systems ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 144-153
Author(s):  
Ju. V. Nikitina ◽  
E. V. Topnikova ◽  
O. V. Lepilkina ◽  
O. G. Kashnikova

The features of technologies for low- and lactose-free dairy products, which provide for special operations to hydrolyze lactose or remove it using ultra- or nanofiltration followed by hydrolysis of the residual amount, are considered. Dairy products manufactured using these technologies in different countries as well as enterprises leading in this field of production are presented. The analysis of the methods used to determine the quantitative content of residual lactose in low- and lactose-free dairy products is carried out: enzymatic, HPLC, HPAEC-PAD, amperometric biosensors, Raman spectroscopy. Due to the dairy industry’s need for analytical methods for the determination of lactose in milk and dairy products with low- or lactose-free content, the AOAC Stakeholder Group on Strategic Food Analysis Methods approved Standard Performance Requirements for Biosensor Methods (SMPR®) 2018.009. These requirements were introduced for the quantitative determination of lactose in milk as well as in dairy and milk-containing products with a low or no lactose content. The biosensor method is recommended for use as the official first step of AOAC method. Additionally, it is advisable to use high performance liquid chromatography (HPLC) with mass spectrometric detection, as well as high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) as an international standard method of analysis for the determination of lactose in milk with low- or lactose-free content.


2002 ◽  
Vol 10 (1) ◽  
pp. 67-74
Author(s):  
Günther Rackl ◽  
Thomas Ludwig ◽  
Markus Lindermeier ◽  
Alexandros Stamatakis

Software development is getting more and more complex, especially within distributed middleware-based environments. A major drawback during the overall software development process is the lack of on-line tools, i.e. tools applied as soon as there is a running prototype of an application. The MIMO MIddleware MOnitor provides a solution to this problem by implementing a framework for an efficient development of on-line tools. This paper presents a methodology for developing on-line tools with MIMO. As an example scenario, we choose a distributed medical image reconstruction application, which represents a test case with high performance requirements. Our distributed, CORBA-based application is instrumented for being observed with MIMO and related tools. Additionally, load balancing mechanisms are integrated for further performance improvements. As a result, we obtain an integrated tool environment for observing and steering the image reconstruction application. By using our rapid tool development process, the integration of on-line tools shows to be very convenient and enables an efficient tool deployment.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sumitra Singar ◽  
N. K. Joshi ◽  
P. K. Ghosh

Dual edge triggered (DET) techniques are most liked choice for the researchers in the field of digital VLSI design because of its high-performance and low-power consumption standard. Dual edge triggered techniques give the similar throughput at half of the clock frequency as compared to the single edge triggered (SET) techniques. Dual edge triggered techniques can reduce the 50% power consumption and increase the total system power savings. The low-power glitch-free novel dual edge triggered flip-flop (DET-FF) design is proposed in this paper. Still now, existing DET-FF designs are constructed by using either C-element circuit or 1P-2N structure or 2P-1N structure, but the proposed novel design is designed by using the combination of C-element circuit and 2P-1N structure. In this design, if any glitch affects one of the structures, then it is nullified by the other structure. To control the input loading, the two circuits are merged to share the transistors connected to the input. In the proposed design, we have used an internal dual feedback structure. The proposed design reduces the delay and power consumption and increases the speed and efficiency of the system.


Sign in / Sign up

Export Citation Format

Share Document