scholarly journals A FRACTAL-FRACTIONAL 2019-NCOV MODEL OF MAJOR DISASTER FOR HUMAN LIFE

Fractals ◽  
2021 ◽  
Author(s):  
SHAHER MOMANI ◽  
R. P. CHAUHAN ◽  
SUNIL KUMAR ◽  
SAMIR HADID

The purpose of this research is to explore the spread dynamics of a novel coronavirus outbreak, or 2019-nCOV via a fractional approach of type fractal-fractional (FF) derivative. We considered the FF approach in sense of the Atangana–Baleanu derivative for the system 2019-nCOV. In the FF operator, when we choose fractional-order one, we achieve the fractal model and when choosing fractal order one then we obtain a fractional model and while considering both the operators together we obtain the fractal-fractional model. The obtained results show via graphics for the different collections of fractal and fractional orders. The graphical results show the new operator impacts on a practical situation in a more visual way.

2020 ◽  
Vol 25 (2) ◽  
pp. 234-239
Author(s):  
Jesús María López Lezama ◽  
David Esteban Betancur Herrera ◽  
Juan Bernardo Cano ◽  
Nicolás Muñoz Galeano

This paper analyses the impact of fractional orders of derivatives over the response of DC-DC converters which includes fractional capacitors and their parasitic losses for a more realistic approximation of the converter. A fractional model is proposed and is applied for a Boost DC-DC with a fractional capacitor in its DC bus. The fractional model is obtained using Kirchhoff laws and applying the conventional switching model. Then, the resulting set of fractional differential equations is in the Caputo’s sense and was solved using Wavelets method. Solutions were appropriately shown using 3D representations, varying the duty cycle and the fractional order to determine the behaviour of the fractional capacitor voltage, inductor current and output voltage. Ripples and steady state values were determined. Results show high dependence of the fractional order in the variables related to the voltage in the fractional capacitor. With respect to the current, results show that the fractional order does not significantly affect its steady state and ripple.


Author(s):  
Natasha Sharma ◽  
Atul Kumar Verma ◽  
Arvind Kumar Gupta

The SARS-CoV-2 driven infectious novel coronavirus disease (COVID-19) has been declared a pandemic by virtue of its brutal impact on the world in terms of loss on human life, health, economy, and other crucial resources. With the aim to explore more about its aspects, we adopted the SEIQRD (Susceptible-Exposed-Infected-Quarantine-Recovered-Death) pandemic spread with a time delay on the heterogeneous population and geography in this work. Focusing on the spatial heterogeneity, the entire population of interest in a region is divided into small distinct geographical sub regions, which interact by means of migration networks across boundaries. Utilizing the estimations of the time delay differential equations based model, we analyzed the spread dynamics of disease in a region and its sub regions. The model based numerical outcomes are validated from real time available data for India. We computed the approximate peak infection in forward time and relative timespan when disease outspread halts. To further evaluate the influence of the delay on the long term system dynamics, the sensitivity analysis is performed on time delay. The most crucial parameter, basic reproduction number R0 and its time-dependent generalization, has been estimated at both regional and sub regional levels. The impact of the most significant lockdown measure that has been implemented in India to contain the pandemic spread has been extensively studied by considering no lockdown scenario. A suggestion based on outcomes, for a bit relaxed lockdown, followed by an extended period of strict social distancing as one of the most effective control measures to manage COVID-19 spread is provided for India.


2021 ◽  
Vol 146 ◽  
pp. 110859
Author(s):  
Ahmed Boudaoui ◽  
Yacine El hadj Moussa ◽  
Zakia Hammouch ◽  
Saif Ullah

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.


2021 ◽  
Vol 10 (15) ◽  
pp. 1098-1101
Author(s):  
Aditi Vinay Chandak ◽  
Surekha Dubey Godbole ◽  
Tanvi Rajesh Balwani ◽  
Tanuj Sunil Patil

Ecosystem, which consists of the physical environment and all the living organisms, on which we all depend, is declining rapidly because of its destruction caused by humans. It’s a two-way relationship between the humans and mother nature. If we destroy the natural environment around us, human life will be seriously affected, and the life of next generation will be endangered unless serious steps are taken. One such effect of human overexploitations has come in the form of coronavirus outbreak. Coronavirus, a contagious disease of 2019 known as Covid-19, is the latest swiftly spreading global infection. The aetiology of Covid-19 is different from SARS-CoV which has the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it has the same host receptor, human angiotensin converting enzyme 2 (ACE2). The novel coronavirus which is zoonotic (spreading from an animal to a human) and mainly found in the bats and pangolins is a single stranded ribonucleic acid virus of Coronaviridae family. 1 The typical structure of 2019-nCoV possessed ‘spike protein’ in the membrane envelope, also expressed various polyproteins, nucleoproteins and membrane protein. The S protein binds to the receptor cell of host to facilitate the entry of virus in the host. Currently four genera for coronavirus are found α-CoV, ßCoV, γ-CoV, δ-CoV. SARS-CoV first originated in Wuhan, China and has spread across the globe. World Health Organization (WHO) and public health emergency of international concern declared it as 2019 - 2020 pandemic disease.2 According to WHO report, (7th April 2020) update on this pandemic coronavirus disease, there have been more than 13,65,004 confirmed cases and 76,507 deaths across the world and these figures are rapidly increasing. Therefore, actions for proper recognition, management and its prevention must be prompted for relevant alleviation of its outspread.3 Health care professionals are mainly indulged in the national crises and are working diligently around-the-clock, small ratio of the health care workers have become affected and few died tragically. Dentists are most often the first ones to be affected because they work with patients in close proximity. On 15th March 2020, the New York Times published an article titled “The workers who face the greatest Coronavirus risk” described the dentists are highly exposed, than the paramedical staffs and general physicians, to the risk of novel coronavirus disease 19.4


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


2021 ◽  
Vol 58 (2) ◽  
pp. 613-620
Author(s):  
Mustafa Amdani, Dr. Swaroopa Chakole

BACKGROUND The expanse of the coronavirus disease 2019 or COVID-19 is huge. The impact is multispectral and affected almost all aspects of human life. SUMMARY Respiratory impact of the COVID-19 is the most felt and widely reported impact. As the novel coronavirus maintained its history of affecting lungs as seen previously in severe acute respiratory syndrome (SARS) outbreak. Ventilators and oxygen support system are required mostly in comorbid patients particularly amongpatientsbearing illnesses like asthma, bronchial impairment and so on. CONCLUSION More study needs to be done in order to assess the impact on the respiratory functioning of the body. Respiratory care must be including proper instruments so that more efficient result can be obtained. Research is needed to promote the invention of specific therapy for targeted action for respiratory functioning improvement.


Author(s):  
Abir Khadhraoui ◽  
Khaled Jelassi ◽  
Jean-Claude Trigeassou ◽  
Pierre Melchior

A bad initialization of output-error (OE) technique can lead to an inappropriate identification results. In this paper, we introduce a solution to this problem; the basic idea is to estimate the parameters and the fractional order of the noninteger system by a new approach of least-squares (LS) method based on repeated fractional integration to initialize OE technique. It will be shown that LS method offers a good initialization to OE algorithm and leads to acceptable identification results. The performance of the proposed method is shown through numerical simulation examples.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


Sign in / Sign up

Export Citation Format

Share Document