Carbon Dioxide Flooding Technology Research and Field Test in Liuzan North Block

2014 ◽  
Vol 13 (05n06) ◽  
pp. 1460007
Author(s):  
Hanshi Zhang ◽  
Pingya Luo ◽  
Lei Sun ◽  
Zhijun Fu

The fault roots of Liuzan north block in Jidong oilfield of China have been long-term explored by solution gas drive. Recently, oil production declined rapidly because of shortage of formation energy and needing high water injection pressure. Carbon dioxide injection pressure is found to be generally low, and CO 2 has good solubility in crude oil to supply formation energy and achieve high oil recovery efficiency. In this work, a pilot program of CO 2 EOR technology was carried out. The slim tube test results showed that the minimal miscible pressure of Liuzan north block was 28.28 MPa. The injection parameters were optimized by numerical simulation method: the injection method was continuous, the slug size was 0.2 HCPV and the EOR efficiency was 7.23%. After two months of gas injection field test, the formation pressure of two gas injectors just increased by 14.02 MPa and 2.98 MPa, respectively, indicating that carbon dioxide could supply the formation energy effectively. 16 months after gas injection, the CO 2 injection amount was 14640 t, and the oil increment was 16424 t. The present work demonstrates the potential applicability of CO 2 flooding technology from high water injection reservoirs.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


2021 ◽  
Author(s):  
Jiaxi Gao ◽  
Yuedong Yao ◽  
He Bao ◽  
Jinjiang Shen

Abstract: Yanchang Oilfield conducts systematic research on nitrogen injection to enhance oil recovery. Through the research of this project, the energy supplement method of horizontal wells suitable for the study area is determined, and its injection system and process parameters are optimized and determined. The optimal energy replenishment method selected by the mine field test achieves the following economic and technical indicators: Provide a nitrogen suitability evaluation plan; Complete the nitrogen flooding matching process design of the target well; Complete the design of the injection-production plan for the target well; Compare with other energy supplement methods. Through the analysis of two supplementary energy methods of water injection and gas injection in indoor and similar reservoirs, the following understandings have been obtained: (1) Nitrogen is insoluble in water, slightly soluble in oil, good swelling, large elastic energy, is an inert gas, exists widely in the atmosphere, inexhaustible, inexhaustible, has a wide range of sources. (2) the recovery rate of nitrogen flooding is significantly higher than that of water flooding. (3) The field test results of water injection and nitrogen test in similar reservoirs show that the supplementary formation energy of nitrogen injection is suitable for the later development of Chang 64 and Chang 71 in the Haobasi oil field. (4) Compared with deep ultra-low permeability reservoirs, it is more economical to use nitrogen to supplement formation energy and change oil. The rate is higher. From the above analysis, it can be seen that the supplementary energy of Chang 64 and Chang 71 reservoirs in the Haobasi oil area should be nitrogen injection as the main supplement, and water injection as a supplement. Gas/water alternate injection is used to adjust the gas injection profile to slow down the escape of injected nitrogen. . Although water injection supplements the formation energy with greater uncertainty, it can be used as a technical means of fluidity control in the gas injection process and is relatively economical.


SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 345-354 ◽  
Author(s):  
Lorraine E. Sobers ◽  
Martin J. Blunt ◽  
Tara C. LaForce

Summary We developed an injection strategy to recover moderately heavy oil and store carbon dioxide (CO2) simultaneously. Our compositional simulations are founded on pressure/volume/temperature- (PVT-) matched properties of oil found in an unconsolidated deltaic sandstone deposit in the Gulf of Paria, offshore Trinidad. In this region, oil density ranges between 940 and 1010 kg/m3 (9 to 18°API). We use countercurrent injection of gas and water to improve reservoir sweep and trap CO2 simultaneously; water is injected in the upper portion of the reservoir, and gas is injected in the lower portion. The two water-injection rates investigated, 100 and 200 m3/d, correspond to the water-gravity numbers 6.3 to 3.1 for our reservoir properties. We applied this injection strategy using vertical producers with two injection configurations: single vertical injector and a pair of horizontal parallel laterals in a simplified representation of the unconsolidated Forest sand found offshore Trinidad. Twelve simulation runs were conducted, varying injection-gas composition for miscible- and immiscible-gas drives, water-injection rate, and injection-well orientation. Our results show that water-over-gas injection can realize oil recoveries ranging from 17 to 30%. In each instance, more than 50% of injected CO2 remained in the reservoir, with less than 15% of the retained CO2 in the mobile phase.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2016 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
H. Karimaie ◽  
O. Torsæter

The purpose of the three experiments described in this paper is to investigate the efficiency of secondary andtertiary gas injection in fractured carbonate reservoirs, focusing on the effect of equilibrium gas,re-pressurization and non-equilibrium gas. A weakly water-wet sample from Asmari limestone which is the mainoil producing formation in Iran, was placed vertically in a specially designed core holder surrounded withfracture. The unique feature of the apparatus used in the experiment, is the capability of initializing the samplewith live oil to obtain a homogeneous saturation and create the fracture around it by using a special alloy whichis easily meltable. After initializing the sample, the alloy can be drained from the bottom of the modified coreholder and create the fracture which is filled with live oil and surrounded the sample. Pressure and temperaturewere selected in the experiments to give proper interfacial tensions which have been measured experimentally.Series of secondary and tertiary gas injection were carried out using equilibrium and non-equilibrium gas.Experiments have been performed at different pressures and effect of reduction of interfacial tension werechecked by re-pressurization process. The experiments showed little oil recovery due to water injection whilesignificant amount of oil has been produced due to equilibrium gas injection and re-pressurization. Results alsoreveal that CO2 injection is a very efficient recovery method while injection of C1 can also improve the oilrecovery.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


Author(s):  
Stanislav A. Kalinin ◽  
◽  
Oleg A. Morozyuk ◽  

It is of current concern for the Permian-Carboniferous reservior of the Usinskoye field to develop low-permeable matrix blocks of carboniferous reservoirs, which contain major reserves of high-viscosity oil. To increase effectiveness of the currently used thermal oil recovery methods, the authors suggest using carbon dioxide as a reservoir stimulation agent. Due to a high mobility in its supercritical condition, СО2 is, theoretically, able to penetrate matrix blocks, dissolve in oil and, additionally, decrease its viscosity. Thus, СО2 applications together with a heat carrier could increase effectiveness of the high-viscosity oil recoveries and improve production parameters of the Permian-Carboniferous reservior of the Usinskoye field. During carbon dioxide injections, including combinations with various agents, some additional oil production is possible due to certain factors. Determination of the influencing factors and detection of the most critical ones is possible in laboratory tests. So, laboratory studies entail the key stage in justification of the technology effectiveness. The paper deals with describing the laboratory facilities and methodologies based on reviews of the best world practice and previous laboratory researches. These aim at evaluating effectiveness of thermal, gas and combined oil recovery enhancement methods. In particular, the authors explore experimental facilities and propose methodology to perform integrated researches of the combined heat carrier and carbon dioxide injection technology to justify the effective super-viscous oil recovery method.


Author(s):  
Erhui Luo ◽  
Zifei Fan ◽  
Yongle Hu ◽  
Lun Zhao ◽  
Jianjun Wang

Produced gas containing the acid gas reinjection is one of the effective enhanced oil recovery methods, not only saving costs of disposing acid gases and zero discharge of greenhouse gases but also supporting reservoir pressure. The subsurface fluid from the Carboniferous carbonate reservoir in the southern margin of the Pre-Caspian basin in Central Asia has low density, low viscosity, high concentrations of H2S (15%) and CO2 (4%), high solution gas/oil ratio. The reservoir is lack of fresh water because of being far away onshore. Pilot test has already been implemented for the acid gas reinjection. Firstly, in our work a scheme of crude oil composition grouping with 15 compositions was presented on the basis of bottomhole sampling from DSTs of four wells. After matching PVT physical experiments including viscosity, density and gas/oil ratio and pressure–temperature (P–T) phase diagram by tuning critical properties of highly uncertain heavy components, the compositional model with phase behavior was built under meeting accuracy of phase fitting, which was used to evaluate mechanism of miscibility development in the acid gas injection process. Then using a cell-to-cell simulation method, vaporizing and/or condensing gas drive mechanisms were investigated for mixtures consisting of various proportions of CH4, CO2 and H2S in the gas injection process. Moreover, effects of gas compositions on miscible mechanisms have also been determined. With the aid of pressure-composition diagrams and pseudoternary diagrams generated from the Equation of State (EoS), pressures of First Contact Miscibility (FCM) and Multiple Contact Miscibility (MCM) for various gases mixing with the reservoir oil sample under reservoir temperature were calculated. Simulation results show that pressures of FCM are higher than those of MCM, and CO2 and H2S are able to reduce the miscible pressure. At the same time, H2S is stronger. As the CH4 content increases, both pressures of FCM and MCM are higher. But incremental values of MCM decrease. In addition, calculated envelopes of pseudoternary diagrams for mixtures of CH4, CO2 and H2S gases of varying composition with acid gas injection have features of bell shape, hourglass shape and triangle shape, which can be used to identify vaporizing and/or condensing gas drives. Finally, comparison of the real produced gas and the one deprived of its C3+ was performed to determine types of miscibility and calculate pressures of FCM and MCM. This study provides a theoretical guideline for selection of injection gas to improve miscibility and oil recovery.


2019 ◽  
Vol 10 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Sherif Fakher ◽  
Mohamed Ahdaya ◽  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during CO2 injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without CO2 in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying CO2 injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during CO2 injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during CO2 injection in different pore sizes in order to help reduce asphaltene-related problems that arise during CO2 injection in hydrocarbon reservoirs.


Sign in / Sign up

Export Citation Format

Share Document