scholarly journals The Bidirectional Relationship Between Cancer Epigenetics and Metabolism

Author(s):  
Luke T. Izzo ◽  
Hayley C. Affronti ◽  
Kathryn E. Wellen

Metabolic and epigenetic reprogramming are characteristics of cancer cells that, in many cases, are linked. Oncogenic signaling, diet, and tumor microenvironment each influence the availability of metabolites that are substrates or inhibitors of epigenetic modifying enzymes. Reciprocally, altered expression or activity of epigenetic modifying enzymes can exert direct and indirect effects on cellular metabolism. In this article, we discuss the bidirectional relationship between epigenetics and metabolism in cancer. First, we focus on epigenetic control of metabolism, highlighting evidence that alterations in histone modifications, chromatin remodeling, or the enhancer landscape can drive metabolic features that support growth and proliferation. We then discuss metabolic regulation of chromatin-modifying enzymes and roles in tumor growth and progression. Throughout, we highlight proposed therapeutic and dietary interventions that leverage metabolic-epigenetic cross talk and have the potential to improve cancer therapy. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2719
Author(s):  
Alba Loras ◽  
Cristina Segovia ◽  
José Luis Ruiz-Cerdá

Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.


Author(s):  
Annette Paschen ◽  
Ignacio Melero ◽  
Antoni Ribas

Resistance to immunotherapy is due in some instances to the acquired stealth mechanisms of tumor cells that lose expression of MHC class I antigen–presenting molecules or downregulate their class I antigen–presentation pathways. Most dramatically, biallelic β2-microglobulin (B2M) loss leads to complete loss of MHC class I expression and to invisibility to CD8+ T cells. MHC class I expression and antigen presentation are potently upregulated by interferon-γ (IFNγ) in a manner that depends on IFNγ receptor (IFNGR) signaling via JAK1 and JAK2. Mutations in these molecules lead to IFNγ unresponsiveness and mediate loss of recognition and killing by cytotoxic T lymphocytes. Loss of MHC class I augments sensitivity of tumor cells to be killed by natural killer (NK) lymphocytes, and this mechanism could be exploited to revert resistance, for instance, with interleukin-2 (IL-2)-based agents. Moreover, in some experimental models, potent local type I interferon responses, such as those following intratumoral injection of Toll-like receptor 9 (TLR9) or TLR3 agonists, revert resistance due to mutations of JAKs. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Szu-Ying Chen ◽  
Ons Mamäi ◽  
Rosemary J. Akhurst

Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies. Here we consider the biological activities of TGFβ action on different cells of relevance toward improving immunotherapy outcomes for patients, with a focus on the adaptive immune system. We discuss recent advances in the development of drugs that target the TGFβ signaling pathway in a tumor-specific or cell type–specific manner to improve the therapeutic window between response rates and adverse effects. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Jonathan M.L. Ostrem ◽  
Kevan M. Shokat

KRAS is the most frequently mutated oncogene in cancer. Following numerous attempts to inhibit KRAS spanning multiple decades, recent efforts aimed at covalently targeting the mutant cysteine of KRAS G12C have yielded very encouraging results. Indeed, one such molecule, sotorasib, has already received accelerated US Food and Drug Administration approval with phase III clinical trials currently underway. A second molecule, adagrasib, has also progressed to phase III, and several others have entered early-phase clinical trials. The success of these efforts has inspired an array of novel approaches targeting KRAS, with some reporting extension to the two most common oncogenic KRAS mutations, G12V and G12D. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Brent W. Anderson ◽  
Danny K. Fung ◽  
Jue D. Wang

Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets’ common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Günter P. Wagner ◽  
Kshitiz ◽  
Anasuya Dighe ◽  
Andre Levchenko

Analogies between placentation, in particular the behavior of trophoblast cells, and cancer have been noted since the beginning of the twentieth century. To what degree these can be explained as a consequence of the evolution of placentation has been unclear. In this review, we conclude that many similarities between trophoblast and cancer cells are shared with other, phylogenetically older processes than placentation. The best candidates for cancer hallmarks that can be explained by the evolution of eutherian placenta are mechanisms of immune evasion. Another dimension of the maternal accommodation of the placenta with an impact on cancer malignancy is the evolution of endometrial invasibility. Species with lower degrees of placental invasion tend to have lower vulnerability to cancer malignancy. We finally identify several areas in which one could expect to see coevolutionary changes in placental and cancer biology but that, to our knowledge, have not been explored. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Alicia M. McConnell ◽  
Haley R. Noonan ◽  
Leonard I. Zon

Zebrafish are rapidly becoming a leading model organism for cancer research. The genetic pathways driving cancer are highly conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish genome to rapidly generate transgenic animals makes zebrafish an excellent model organism. Transgenic zebrafish containing complex, patient-relevant genotypes have been used to model many cancer types. Here we present a comprehensive review of transgenic zebrafish cancer models as a resource to the field and highlight important areas of cancer biology that have yet to be studied in the fish. The ability to image cancer cells and niche biology in an endogenous tumor make zebrafish an indispensable model organism in which we can further understand the mechanisms that drive tumorigenesis and screen for potential new cancer therapies. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Winnie M.C. van den Boogaard ◽  
Marry M. van den Heuvel-Eibrink ◽  
Jan H.J. Hoeijmakers ◽  
Wilbert P. Vermeij

Dietary restriction (DR) is the most successful nutritional intervention for extending life span and preserving health in numerous species. Reducing food intake triggers a protective response that shifts energy resources from growth to maintenance and resilience mechanisms. This so-called survival response has been shown to particularly increase life and health span and decrease DNA damage in DNA repair–deficient mice exhibiting accelerated aging. Accumulation of DNA damage is the main cause of aging, but also of cancer. Moreover, radiotherapies and most chemotherapies are based on damaging DNA, consistent with their ability to induce toxicity and accelerate aging. Since fasting and DR decrease DNA damage and its effects, nutritional preconditioning holds promise for improving (cancer) therapy and preventing short- and long-term side effects of anticancer treatments. This review provides an overview of the link between aging and cancer, highlights important preclinical studies applying such nutritional preconditioning, and summarizes the first clinical trials implementing nutritional preconditioning in cancer treatment. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Craig M. Bielski ◽  
Barry S. Taylor

The search for somatic mutations that drive the initiation and progression of human tumors has dominated recent cancer research. While much emphasis has been placed on characterizing the prevalence and function of driver mutations, comparatively less is known about their serial genetic evolution. Indeed, study of this phenomenon has largely focused on tumor-suppressor genes recessive at the cellular level or mechanisms of resistance in tumors with mutant oncogenes targeted by therapy. There is, however, a growing appreciation that despite a decades-old presumption of heterozygosity, changes in mutant oncogene zygosity are common and drive dosage and stoichiometry changes that lead to selective growth advantages. Here, we review the recent progress in understanding mutant allele imbalance and its implications for tumor biology, cancer evolution, and response to anticancer therapy. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Kevin Kos ◽  
Karin E. de Visser

The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document