Managing Crop Diseases Under Water Scarcity

2020 ◽  
Vol 58 (1) ◽  
pp. 387-406
Author(s):  
Cassandra L. Swett

The significance of water scarcity to crop production and food security has been globally recognized as a pivotal sustainability challenge in the UN Sustainable Development Goals ( 86 ). The critical link between water scarcity and sustainability is adaptation. Various changes in water use practices have been employed to alleviate production constraints. However, the potential for these changes to influence crop diseases has received relatively little attention, despite the circumglobal importance of diseases to agricultural sustainability. This article reviews what is known about the realized effects of scarcity-driven alterations in water use practices on diseases in the field in order to raise awareness of the potential for both increased disease risk and possible beneficial effects on crop disease management. This is followed by consideration of the primary mechanistic drivers underlying disease outcomes under various water use adaptation scenarios, concluding with a vision for disease–water co-management options and future research needs.

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Jasmine Neupane ◽  
Wenxuan Guo

Agriculture faces the challenge of feeding a growing population with limited or depleting fresh water resources. Advances in irrigation systems and technologies allow site-specific application of irrigation water within the field to improve water use efficiency or reduce water usage for sustainable crop production, especially in arid and semi-arid regions. This paper discusses recent development of variable-rate irrigation (VRI) technologies, data and information for VRI application, and impacts of VRI, including profitability using this technology, with a focus on agronomic factors in precision water management. The development in sprinkler systems enabled irrigation application with greater precision at the scale of individual nozzle control. Further research is required to evaluate VRI prescription maps integrating different soil and crop characteristics in different environments. On-farm trials and whole-field studies are needed to provide support information for practical VRI applications. Future research also needs to address the adjustment of the spatial distribution of prescription zones in response to temporal variability in soil water status and crop growing conditions, which can be evaluated by incorporating remote and proximal sensing data. Comprehensive decision support tools are required to help the user decide where to apply how much irrigation water at different crop growth stages to optimize water use and crop production based on the regional climate conditions and cropping systems.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 593
Author(s):  
Avela Pamla ◽  
Gladman Thondhlana ◽  
Sheunesu Ruwanza

Households in many cities worldwide consume substantial amounts of water, but increasing aridity will result in serious water supply challenges in the future. In South Africa, droughts are now a common phenomenon, with severe implications on water supply for urban households. Developing interventions to minimise the impacts of drought requires understanding of users’ perceptions of water scarcity, water use practices, and participation in water conservation practices. Using household surveys across different income groups (low, medium, and high) in Makhanda, South Africa, this study investigates households’ perceptions of water scarcity, water use, and conservation practices as a basis for designing pathways for sustainable water use practices. Results indicate that a substantial proportion of households were aware of water scarcity and attributed it to poor municipal planning rather than drought and wasteful use practices. Households reported good water use behaviour, but wasteful practices (e.g., regular flushing of toilets) were evident. Gender, age, education, and environmental awareness influenced water use practices, but the relationships were generally weak. Households participated in water conservation measures but felt the local municipal authority lagged in addressing water supply challenges. The implications of the study are discussed.


2020 ◽  
Vol 5 (01) ◽  
pp. 75-89
Author(s):  
Attia El Gayar

The problem of shortage of water to crops can be resolved by increasing total water supply available to plants, increasing water use relative to other losses and efficient management of scarce water. Biophysically, solutions to many of the problems will require the improvement of soil, water, and crop management at the field, plot, and farm level: first, to increase the capture and retention of incoming (rain) water; and second, to maximize the proportion of that water productively transpired by the crop. Dry land agriculture under rain fed conditions is found mainly in Africa, the Middle East, Asia, and Latin America. In the harsh environments of Sub-Saharan Africa (SSA) and West Asia and North Africa (WANA), water is the principal factor limiting crop yield. A review has been carried out on soil and crop management research that can increase the water use efficiency. The WANA production systems are dominated by cereals, primarily wheat in the wetter and barley in the drier areas, in rotation with mainly food legumes such as chickpea, lentil and forage legumes. The SSA production systems are generally characterized by cereal/legume mixed-cropping dominated by maize, millet, sorghum, and wheat. The major constraints in both regions to crop production are low soil fertility, insecure rainfall, and low-productive genotypes, low adoption of improved soil and crop management practices, and lack of appropriate institutional support. Different cropping systems and accompanying technologies are discussed. Results indicate that there is an advantage to apply these technologies but being function of socio-economic and bio-physical conditions. It is recommended that future research focuses on integrated technology development while taking into account also different levels of scale such as field, village, and watershed.


2001 ◽  
Vol 37 (1) ◽  
pp. 1-36 ◽  
Author(s):  
M. K. V. CARR

The role of water in the development and yield of the coffee crop (Coffea arabica L.) is reviewed. A period of water stress, induced either by dry soil or dry air, is needed to prepare flower buds for blossoming that is then stimulated by rain or irrigation. Although attempts have been made to quantify the intensity and duration of stress required, these have not yet been specified in ways that are commercially useful. Water must be freely available during the period of rapid fruit expansion to ensure large, high-quality seed yields. Depending on the time and uniformity of flowering this can occur at times when rainfall is unreliable, particularly in equatorial areas.Although there are differences in their responses to drought, commercial cultivars have retained many of the characteristics adapted to the shady environment of the forests in the Ethiopian highlands in which C. arabica is believed to have originated. These include partial closure of the stomata when evaporation rates are high as a result of large leaf-to-air saturation deficits (>1.6 kPa), even if the soil is at field capacity. This is thought to be an adaptive mechanism that minimizes transpiration at high irradiances when the leaves are light-saturated.Our understanding of the actual water use of coffee crops grown in diverse ways is imperfect. For mature crops, well supplied with water, the crop coefficient (Kc) appears to have a value in the range equivalent to 0.7–0.8 times the evaporation from a US Weather Bureau Class A pan. There is some evidence that Kc values are less than this on days when evaporation rates are high (>7 mm d−1). For immature crops allowance has to be made for the proportion of the ground area shaded by the leaf canopy, but this alone may underestimate rates of water use. Present methods of calculating crop water requirements for the purposes of irrigation scheme design and management are imprecise and, probably, subject to large errors depending on local circumstances.The need for irrigation, and its role in controlling the timing of flowering, varies depending on the rainfall distribution, the severity of the dry season, and soil type and depth. Two geographic areas need to be distinguished in particular; those close to the equator with a bi-modal rainfall pattern and those at higher latitudes with a single rainy season and an extended dry season. Despite the international importance of irrigation in coffee crop production, the benefits to be derived from irrigation, in yield and in financial terms, have not been adequately quantified in either location. Allowable soil-water deficits have been specified for deep-rooting crops (2–3 m) on water retentive soils, usually linked to conventional over-tree sprinkler irrigation systems. Other, potentially more efficient, methods of irrigation are now available for coffee grower use, in particular, micro-jet- and drip-irrigation systems. However, there appears to be little advice, based on sound experimental work, on how to design and operate these to best advantage.There is a need to interpret and apply the scientific understanding of the role that water plays in the growth and development of the coffee plant into practical advice that can assist the grower to plan and to use water efficiently, whether rainfall or irrigation, for the production of reliable, high-quality crops. Future research opportunities are identified.


Author(s):  
Rakshith K. R. ◽  
Shivakumar . ◽  
Kaushal Sinha ◽  
Vijeth Kumar L. A.

Yoga is an ancient practice with Eastern roots that involves both physical postures (Asanas) and breathing techniques (Pranayamas). Yoga therapy for male sexual problems can effectively be treated through Yoga therapy, particularly with the help of Yoga poses and breathing exercises, Yoga has proven itself highly very effective in the treatment of a number of incurable and sometimes terminable diseases. Then again, Yoga's therapeutic effects are just a spin-off and supplementary. Yoga which has proved to be very effective in the treatment of many impossible and incurable diseases, the therapeutic effect of Yoga is only a by product and incidental. Problems related to sex can very well be handled with Yoga as most often these problems are more related to the mind than body. Either they are caused by lack of confidence or stress or fatigue or fear and very few times some physical cause is there. There is also a cognitive component focusing on meditation and concentration, which aids in achieving the goal of union between the self and the spiritual. Although numerous empirical studies have found a beneficial effect of Yoga on different aspects of physical and psychological functioning, claims of Yoga's beneficial effects on sexuality derive from a rich but no empirical literature. The goal of this article is to review the philosophy and forms of Yoga, to review the no empirical and (limited) empirical literatures linking Yoga with enhanced sexuality, and to propose some future research avenues focusing on Yoga as a treatment for sexual disorder.


Author(s):  
Suzanne C. Thompson

A sense of personal control is an important resource that helps people maintain emotional stability and successfully negotiate their way through life. People foster their perceived control by focusing on reachable goals, creating new avenues for control, and accepting difficult-to-change circumstances. In general, perceived control need not be realistic in order to have beneficial effects, although in the area of health promotion, overestimating one's control can reduce the motivation to engage in protection. Research on ethnic differences in the benefits of a sense of personal control suggests that those from more collectivistic cultures or subcultures may be less benefited by a sense of personal control, relying instead on a socially derived sense of control. Successful interventions to enhance personal control include programs that bolster coping skills, give options and decisions to participants, and provide training that encourages attributions to controllable factors. Future research should further explore ethnic differences in the effects of personal control, the consequences of unrealistic control perceptions, and interventions to enhance the sense of control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Buddhadeb Roy ◽  
Shailja Dubey ◽  
Amalendu Ghosh ◽  
Shalu Misra Shukla ◽  
Bikash Mandal ◽  
...  

AbstractLeaf curl, a whitefly-borne begomovirus disease, is the cause of frequent epidemic in chili. In the present study, transmission parameters involved in tripartite interaction are estimated to simulate disease dynamics in a population dynamics model framework. Epidemic is characterized by a rapid conversion rate of healthy host population into infectious type. Infection rate as basic reproduction number, R0 = 13.54, has indicated a high rate of virus transmission. Equilibrium population of infectious host and viruliferous vector are observed to be sensitive to the immigration parameter. A small increase in immigration rate of viruliferous vector increased the population of both infectious host and viruliferous vector. Migrant viruliferous vectors, acquisition, and transmission rates as major parameters in the model indicate leaf curl epidemic is predominantly a vector -mediated process. Based on underlying principles of temperature influence on vector population abundance and transmission parameters, spatio-temporal pattern of disease risk predicted is noted to correspond with leaf curl distribution pattern in India. Temperature in the range of 15–35 °C plays an important role in epidemic as both vector population and virus transmission are influenced by temperature. Assessment of leaf curl dynamics would be a useful guide to crop planning and evolution of efficient management strategies.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 806
Author(s):  
Sarah Tomas-Hernandez ◽  
Jordi Blanco ◽  
Santiago Garcia-Vallvé ◽  
Gerard Pujadas ◽  
María José Ojeda-Montes ◽  
...  

In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document