THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF COFFEE

2001 ◽  
Vol 37 (1) ◽  
pp. 1-36 ◽  
Author(s):  
M. K. V. CARR

The role of water in the development and yield of the coffee crop (Coffea arabica L.) is reviewed. A period of water stress, induced either by dry soil or dry air, is needed to prepare flower buds for blossoming that is then stimulated by rain or irrigation. Although attempts have been made to quantify the intensity and duration of stress required, these have not yet been specified in ways that are commercially useful. Water must be freely available during the period of rapid fruit expansion to ensure large, high-quality seed yields. Depending on the time and uniformity of flowering this can occur at times when rainfall is unreliable, particularly in equatorial areas.Although there are differences in their responses to drought, commercial cultivars have retained many of the characteristics adapted to the shady environment of the forests in the Ethiopian highlands in which C. arabica is believed to have originated. These include partial closure of the stomata when evaporation rates are high as a result of large leaf-to-air saturation deficits (>1.6 kPa), even if the soil is at field capacity. This is thought to be an adaptive mechanism that minimizes transpiration at high irradiances when the leaves are light-saturated.Our understanding of the actual water use of coffee crops grown in diverse ways is imperfect. For mature crops, well supplied with water, the crop coefficient (Kc) appears to have a value in the range equivalent to 0.7–0.8 times the evaporation from a US Weather Bureau Class A pan. There is some evidence that Kc values are less than this on days when evaporation rates are high (>7 mm d−1). For immature crops allowance has to be made for the proportion of the ground area shaded by the leaf canopy, but this alone may underestimate rates of water use. Present methods of calculating crop water requirements for the purposes of irrigation scheme design and management are imprecise and, probably, subject to large errors depending on local circumstances.The need for irrigation, and its role in controlling the timing of flowering, varies depending on the rainfall distribution, the severity of the dry season, and soil type and depth. Two geographic areas need to be distinguished in particular; those close to the equator with a bi-modal rainfall pattern and those at higher latitudes with a single rainy season and an extended dry season. Despite the international importance of irrigation in coffee crop production, the benefits to be derived from irrigation, in yield and in financial terms, have not been adequately quantified in either location. Allowable soil-water deficits have been specified for deep-rooting crops (2–3 m) on water retentive soils, usually linked to conventional over-tree sprinkler irrigation systems. Other, potentially more efficient, methods of irrigation are now available for coffee grower use, in particular, micro-jet- and drip-irrigation systems. However, there appears to be little advice, based on sound experimental work, on how to design and operate these to best advantage.There is a need to interpret and apply the scientific understanding of the role that water plays in the growth and development of the coffee plant into practical advice that can assist the grower to plan and to use water efficiently, whether rainfall or irrigation, for the production of reliable, high-quality crops. Future research opportunities are identified.

2018 ◽  
Vol 36 (4) ◽  
pp. 446-452 ◽  
Author(s):  
Vicente de PR da Silva ◽  
Inajá Francisco de Sousa ◽  
Alexandra L Tavares ◽  
Thieres George F da Silva ◽  
Bernardo B da Silva ◽  
...  

ABSTRACT The water scarcity is expected to intensify in the future and irrigation becomes an essential component of crop production, especially in arid and semiarid regions, where the available water resources are limited. Four field experiments were carried out at tropical environment in Brazil in 2013 and 2014, in order to evaluate the effect of planting date on crop evapotranspiration (ETc), crop coefficient (Kc), growth parameters and water use efficiency (WUE) of coriander (Coriandrum sativum) plants. The planting dates occurred during winter, spring, summer and autumn growing seasons. ETc was obtained through the soil water balance method and the reference evapotranspiration (ETo) through the Penman-Monteith method, using data collected from an automatic weather station located close to the experimental area. The results of the research showed that the mean values of coriander ETc and Kc were 139.8 mm and 0.87, respectively. Coriander water demand is higher in the summer growing season and lower in the winter; however, its yield is higher in the autumn and lower in the winter. Coriander has higher yield and development of its growth variables in the autumn growing season. The results also indicated that the interannual climate variations had significant effects on most growth variables, as yield, ETc and Kc of coriander grown in tropical environment.


2020 ◽  
Vol 58 (1) ◽  
pp. 387-406
Author(s):  
Cassandra L. Swett

The significance of water scarcity to crop production and food security has been globally recognized as a pivotal sustainability challenge in the UN Sustainable Development Goals ( 86 ). The critical link between water scarcity and sustainability is adaptation. Various changes in water use practices have been employed to alleviate production constraints. However, the potential for these changes to influence crop diseases has received relatively little attention, despite the circumglobal importance of diseases to agricultural sustainability. This article reviews what is known about the realized effects of scarcity-driven alterations in water use practices on diseases in the field in order to raise awareness of the potential for both increased disease risk and possible beneficial effects on crop disease management. This is followed by consideration of the primary mechanistic drivers underlying disease outcomes under various water use adaptation scenarios, concluding with a vision for disease–water co-management options and future research needs.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 602b-602
Author(s):  
James B. Calkins ◽  
Bert T. Swanson ◽  
Daniel G. Krueger ◽  
Karin R. Lundquist

A study was designed to ascertain the efficacy, water use efficiency, runoff potential, and cost effectiveness of four container irrigation systems: overhead sprinkler irrigation, in-line trickle irrigation, capillary mat with leaky hose, and sub-irrigation. Results were species dependent. Plant growth was best under capillary mat and trickle irrigation treatments, however, differences in plant growth and performance between irrigation treatments were minimal. Differences in water use, however, were quite significant. Overhead irrigation was inefficient regarding water use while capillary mat and trickle systems used much lower volumes of water. Conservative irrigation systems which maintain acceptable plant growth using less water and reduce runoff from container production areas can clearly benefit growers by reducing production and environmental costs.


Author(s):  
Camila Duane Corrêa Gaia ◽  
Italo Marlone Gomes Sampaio ◽  
Mariele dos Santos Araújo ◽  
Jéssica Mariana Coelho Magalhães ◽  
Raquel Giseli Assis Rosário ◽  
...  

This study evaluated the effect that different irrigation depths have on the growth and crop production of jambu plants. The treatments consisted of five irrigation depths corresponding to 40%, 70%, 100%, 130% and 160% of field capacity. We used randomized blocks with four replications for the experimental design. The plot consisted of four plants in separate pots. For comparison of treatments, at 27 days after transplantation, the following variables were analyzed: plant height, stem diameter, leaf fresh matter, stalk fresh matter, root fresh matter, inflorescence fresh matter, leaf dry matter, stalk dry matter, root dry matter, inflorescence dry matter and water use efficiency. The effect of irrigation depth was significant for the analyzed variables, except for stem diameter and inflorescence dry matter. There was a quadratic behavior of the variables regarding the applied irrigation depths. The maximum values of each parameter were obtained with irrigation depths close to 100% field capacity. Although the efficiency of water use was higher for the irrigation depth of 40% field capacity, the use of irrigation depth at 100% field capacity is recommended since it provided the best answers of the variables analyzed.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 559 ◽  
Author(s):  
Lin ◽  
Lin ◽  
Wu ◽  
Chang

Water deficits during the growing season are a major factor limiting crop production. Therefore, reducing water use during crop production by the application of regulated deficit irrigation (RDI) is crucially important in water resources. There are few reports on the biostimulants used for growth and water use efficiency (WUE) in maize (Zea mays Linn.) under RDI. Therefore, the influence of betaine and chitin treatments, alone and in combination, on maize cultivar ‘White Pearl’ was assessed by observing changes in the physiology and morphology of plants exposed to RDI. Plants were grown in plastic pots in greenhouses and maintained under full irrigation (FI) for 1 week until imposing RDI and biostimulants. Plants were then subjected to FI (no water deficiency treatment, field capacity >70%) and RDI (field capacity <50%) conditions until the end of each experiment. Plant agronomic performance, photosynthesis parameters, and WUE values were recorded weekly for 8 weeks and three individual experiments were carried out to assess the efficacy of biostimulants and irrigation treatments. Betaine (0, 50, and 100 mM/plant) was foliage-treated every 2 weeks during Experiment 1, but chitin (0, 2, and 4 g/kg) was applied to the soil at the beginning of Experiment 2. The optimal concentration of each chemical alone or in combination was then applied to the plants as Experiment 3. A factorial experiment design of two factors with different levels under a completely randomized arrangement was used in this investigation. Betaine (50 mM) or chitin (2 g/kg) treatments alone significantly elevated total fresh weight (63.03 or 124.07 g/plant), dry weight (18.00 or 22.34 g/plant), and cob weight (3.15 or 6.04 g/plant) and boosted the water-stress tolerance of the maize under RDI compared to controls. However, a combination treatment of 50 mM betaine and 2 g/kg chitin did not increase plant height, fresh shoot and root weights, dry cob weight, and total dry weight under RDI compared to controls. Soil-plant analysis development (SPAD) values (>30) were effective in detecting plant growth performance and WUE values under RDI. These findings may have greater significance for farming in dry lands and offer information for further physiological studies on maize WUE and water stress tolerance


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Jasmine Neupane ◽  
Wenxuan Guo

Agriculture faces the challenge of feeding a growing population with limited or depleting fresh water resources. Advances in irrigation systems and technologies allow site-specific application of irrigation water within the field to improve water use efficiency or reduce water usage for sustainable crop production, especially in arid and semi-arid regions. This paper discusses recent development of variable-rate irrigation (VRI) technologies, data and information for VRI application, and impacts of VRI, including profitability using this technology, with a focus on agronomic factors in precision water management. The development in sprinkler systems enabled irrigation application with greater precision at the scale of individual nozzle control. Further research is required to evaluate VRI prescription maps integrating different soil and crop characteristics in different environments. On-farm trials and whole-field studies are needed to provide support information for practical VRI applications. Future research also needs to address the adjustment of the spatial distribution of prescription zones in response to temporal variability in soil water status and crop growing conditions, which can be evaluated by incorporating remote and proximal sensing data. Comprehensive decision support tools are required to help the user decide where to apply how much irrigation water at different crop growth stages to optimize water use and crop production based on the regional climate conditions and cropping systems.


2019 ◽  
Vol 11 (10) ◽  
pp. 1235 ◽  
Author(s):  
Aaron M. Shew ◽  
Aniruddha Ghosh

In many countries, in situ agricultural data is not available and cost-prohibitive to obtain. While remote sensing provides a unique opportunity to map agricultural areas and management characteristics, major efforts are needed to expand our understanding of cropping patterns and the potential for remotely monitoring crop production because this could support predictions of food shortages and improve resource allocation. In this study, we demonstrate a new method to map paddy rice using Google Earth Engine (GEE) and the Landsat archive in Bangladesh during the dry (boro) season. Using GEE and Landsat, dry-season rice areas were mapped at 30 m resolution for approximately 90,000 km2 annually between 2014 and 2018. The method first reconstructs spectral vegetation indices (VIs) for individual pixels using a harmonic time series (HTS) model to minimize the effect of any sensor inconsistencies and atmospheric noise, and then combines the time series indices with a rule-based algorithm to identify characteristics of rice phenology to classify rice pixels. To our knowledge, this is the first time an annual pixel-based time series model has been applied to Landsat at the national level in a multiyear analysis of rice. Findings suggest that the harmonic-time-series-based vegetation indices (HTS-VIs) model has the potential to map rice production across fragmented landscapes and heterogeneous production practices with comparable results to other estimates, but without local management or in situ information as inputs. The HTS-VIs model identified 4.285, 4.425, 4.645, 4.117, and 4.407 million rice-producing hectares for 2014, 2015, 2016, 2017, and 2018, respectively, which correlates well with national and district estimates from official sources at an average R-squared of 0.8. Moreover, accuracy assessment with independent validation locations resulted in an overall accuracy of 91% and a kappa coefficient of 0.83 for the boro/non-boro stable rice map from 2014 to 2018. We conclude with a discussion of potential improvements and future research pathways for this approach to spatiotemporal mapping of rice in heterogeneous landscapes.


1974 ◽  
Vol 83 (2) ◽  
pp. 363-378 ◽  
Author(s):  
M. K. V. Carr

SUMMARYIn a dry area of Southern Tanzania with a single rainy season irrigation during the six-month-long dry season (May-November) doubled the total annual yield of tea and at the same time evened its distribution over the year to some extent. Other factors including low temperatures limited growth rates during the period June-September despite irrigation, whilst a lull in production in November appeared to be unrelated to external factors. Roots were traced to depths of about 4·3 m and by the end of the dry season unirrigated bushes were drying the soil below 3m. In general total yields decreased with decreasing frequency of irrigation and quantity of water applied but because these plants were deep rooting they could withstand deficits up to 100 mm without a reduction in yield, equivalent to a loss of about 25% of the total available water in the profile. There was some evidence that the most economical use of water occurred when the soil was not rewetted to field capacity at each irrigation, although yields were then less. Irrigation also reduced the incidence of a stem canker, Phomopsis theae. The implications of these results to the tea industry of East Africa are discussed.


2020 ◽  
Author(s):  
Claudio Gandolfi ◽  
Alessandro Castagna ◽  
Andrea Castelletti ◽  
Matteo Giuliani ◽  
Maria Chiara Lippera ◽  
...  

&lt;p&gt;Water resources planning at the basin scale is the keystone to adaptation of water resources systems to socio-economic and climate changes. Simulation and optimization models can provide a useful support to the planning process. Besides including all significant processes, they need to incorporate the contribution of the relevant stakeholders from the early stages of their development, particularly in areas where multiple concurring uses of water resources occur and where surface water-groundwater interactions are important.&amp;#160; This is the case of the plain of the Lombardy Region, Italy, where an ancient system of irrigation canals has been successfully used for centuries to supply huge amounts of water to a large irrigated area, which is also one of the most industrialized in Europe (Lombardy is one of the &amp;#8220;Four Motors for Europe&amp;#8221;, a transnational network of highly industrialized regions including Rh&amp;#244;ne-Alpes, Baden-W&amp;#252;rttemberg and Catalonia). Indeed, the Lombardy water resources have suffered recurrent crisis in the last years and a huge pressure has been raising on irrigation water use, which is by far the main consumptive use. We illustrate here an integrated approach to the analysis of different strategies of adaptation of irrigation systems to changing conditions, which accounts for the links between water use, crop production, energy consumption and hydrological conditions (as a proxy of the ecosystems quality). &amp;#160;We will consider the case study of the Adda river basin, an 8,000 km&lt;sup&gt;2&lt;/sup&gt; basin including lake Como, where the requirements of hydropower production and irrigation supply need to strike a balance with lake tourism, flood protection and environment conservation.&lt;/p&gt;&lt;p&gt;The approach is based on a combination of simulation models (of upstream sub-basin, lake and downstream sub-basin) and optimization model (of lake regulation policy) that allow assessing the effects of different climate and technological scenarios. The former scenarios were obtained downscaling the regional climate projections provided by the CORDEX project till 2100, while for the latter we focused on measures to increase the efficiency of irrigation systems, that emerged as priority from the discussions with the stakeholders. Specifically, we considered different degrees of reconversion of irrigation methods from surface irrigation to more efficient methods (sprinkler or drip). The effects of the reconversion, under different climate projections, were assessed by running simulations with the IdrAgra spatially distributed agro-hydrological model, which provided the estimated values of crop water use, groundwater recharge, return flows, as well as of crop production and energy consumption. &amp;#160;The comparison of different reconversion intensities was carried out considering indicators for the satisfaction of crop water requirements, the energy consumption, the groundwater recharge, and the river hydrological regime. A number of remarks can be made from the analysis of the results, among which it clearly emerged that under the current trend of increasing temperature already at the mid of the century irrigation deficits and impacts on the river hydrological regime will be intolerable unless the irrigation system efficiency will increase significantly in vast portions of the study area. Finally, a preliminary estimate of the cost of interventions is provided.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document