scholarly journals Non-coding RNAs in kidney injury and repair

2019 ◽  
Vol 317 (2) ◽  
pp. C177-C188 ◽  
Author(s):  
Zhiwen Liu ◽  
Ying Wang ◽  
Shaoqun Shu ◽  
Juan Cai ◽  
Chengyuan Tang ◽  
...  

Acute kidney injury (AKI) is a major kidney disease featured by a rapid decline of renal function. Pathologically, AKI is characterized by tubular epithelial cell injury and death. Besides its acute consequence, AKI contributes critically to the development and progression of chronic kidney disease (CKD). After AKI, surviving tubular cells regenerate to repair. Normal repair restores tubular integrity, while maladaptive or incomplete repair results in renal fibrosis and eventually CKD. Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and tRNAs. Accumulating evidence suggests that ncRNAs play important roles in kidney injury and repair. In this review, we summarize the recent advances in the understanding of the roles of ncRNAs, especially miRNAs and lncRNAs in kidney injury and repair, discuss the potential application of ncRNAs as biomarkers of AKI as well as therapeutic targets for treating AKI and impeding AKI-CKD transition, and highlight the future research directions of ncRNAs in kidney injury and repair.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 338 ◽  
Author(s):  
Ying Wang ◽  
Juan Cai ◽  
Chengyuan Tang ◽  
Zheng Dong

Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.


2021 ◽  
Vol 22 (9) ◽  
pp. 4374
Author(s):  
Tomoaki Takata ◽  
Hajime Isomoto

Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease. However, the management of chronic kidney disease, particularly diabetes, requires vast improvements. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well as various other mechanisms, including blood pressure and hemodynamic regulation, protection from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease. Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mechanisms underlying their renoprotective effects. Hence, the information contained herein will advance the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting future research in the field.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianwen Yu ◽  
Danli Xie ◽  
Naya Huang ◽  
Qin Zhou

Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


2021 ◽  
pp. ASN.2020101442
Author(s):  
Michael Randles ◽  
Franziska Lausecker ◽  
Qing Kong ◽  
Hani Suleiman ◽  
Graeme Reid ◽  
...  

Background: Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Whilst histological and ultrastructural patterns of excess matrix form the basis of human disease classifications, comprehensive molecular resolution of abnormal matrix is lacking. Methods: Using mass spectrometry-based proteomics we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidney matrix during aging and to existing kidney disease datasets to identify common molecular features. Results: Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, XV, fibrinogens and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons and the increase in interstitial matrix was also observed in human kidney disease datasets. Conclusions: This study provides deep molecular resolution of matrix accumulation in kidney aging and disease and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.


2020 ◽  
Vol 115 (5) ◽  
Author(s):  
Naisam Abbas ◽  
Filippo Perbellini ◽  
Thomas Thum

Abstract Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.


2019 ◽  
Vol 40 (01) ◽  
pp. 091-100 ◽  
Author(s):  
Peter Fickert ◽  
Alexander R. Rosenkranz

AbstractAcute kidney injury (AKI) is a dreaded complication in patients with liver disease and jaundice, since it is associated with significant morbidity and mortality. Cholemic nephropathy (CN) is thought to represent a widely underestimated important cause of AKI in advanced liver diseases with jaundice. The umbrella term CN describes impaired renal function along with histomorphological changes consisting of intratubular cast formation and tubular epithelial cell injury directed primarily toward distal nephron segments. In cholestasis, biliary constituents may be excreted via the kidney and bilirubin or bile acids may trigger tubular injury and cast formation, but as we begin to understand the underlying pathophysiologic mechanisms, we become increasingly aware of the urgent need for clearly defined diagnostic criteria. In the following, we aim to summarize current knowledge of clinical and morphological characteristics of CN, discuss potential pathomechanisms, and raise key questions to stimulate evolution of a research strategy for CN.


Author(s):  
Sailaja Bhogireddy ◽  
Satendra K. Mangrauthia ◽  
Rakesh Kumar ◽  
Arun K. Pandey ◽  
Sadhana Singh ◽  
...  

AbstractBeyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological processes. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs (miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have been discussed.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1522
Author(s):  
Peter Istvan Turai ◽  
Gábor Nyírő ◽  
Henriett Butz ◽  
Attila Patócs ◽  
Peter Igaz

Around 40% of pheochromocytomas/paragangliomas (PPGL) harbor germline mutations, representing the highest heritability among human tumors. All PPGL have metastatic potential, but metastatic PPGL is overall rare. There is no available molecular marker for the metastatic potential of these tumors, and the diagnosis of metastatic PPGL can only be established if metastases are found at “extra-chromaffin” sites. In the era of precision medicine with individually targeted therapies and advanced care of patients, the treatment options for metastatic pheochromocytoma/paraganglioma are still limited. With this review we would like to nurture the idea of the quest for non-coding ribonucleic acids as an area to be further investigated in tumor biology. Non-coding RNA molecules encompassing microRNAs, long non-coding RNAs, and circular RNAs have been implicated in the pathogenesis of various tumors, and were also proposed as valuable diagnostic, prognostic factors, and even potential treatment targets. Given the fact that the pathogenesis of tumors including pheochromocytomas/paragangliomas is linked to epigenetic dysregulation, it is reasonable to conduct studies related to their epigenetic expression profiles and in this brief review we present a synopsis of currently available findings on the relevance of these molecules in these tumors highlighting their diagnostic potential.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Norbert Kiss ◽  
Péter Hamar

Contrast-induced acute kidney injury (CI-AKI) can occur in 3–25% of patients receiving radiocontrast material (RCM) despite appropriate preventive measures. Often patients with an atherosclerotic vasculature have to receive large doses of RCM. Thus, animal studies to uncover the exact pathomechanism of CI-AKI are needed. Sensitive and specific histologic end-points are lacking; thus in the present review we summarize the histologic appearance of different rodent models of CI-AKI. Single injection of RCM causes overt renal damage only in rabbits. Rats and mice need an additional insult to the kidney to establish a clinically manifest CI-AKI. In this review we demonstrate that the concentrating ability of the kidney may be responsible for species differences in sensitivity to CI-AKI. The most commonly held theory about the pathomechanism of CI-AKI is tubular cell injury due to medullary hypoxia. Thus, the most common additional insult in rats and mice is some kind of ischemia. The histologic appearance is tubular epithelial cell (TEC) damage; however severe TEC damage is only seen if RCM is combined by additional ischemia. TEC vacuolization is the first sign of CI-AKI, as it is a consequence of RCM pinocytosis and lysosomal fusion; however it is not sensitive as it does not correlate with renal function and is not specific as other forms of TEC damage also cause vacuolization. In conclusion, histopathology alone is insufficient and functional parameters and molecular biomarkers are needed to closely monitor CI-AKI in rodent experiments.


Sign in / Sign up

Export Citation Format

Share Document