Poly(ADP-ribose) polymerase-1 (PARP-1) controls lung cell proliferation and repair after hyperoxia-induced lung damage

2007 ◽  
Vol 293 (3) ◽  
pp. L619-L629 ◽  
Author(s):  
Alessandra Pagano ◽  
Isabelle Métrailler-Ruchonnet ◽  
Michel Aurrand-Lions ◽  
Monica Lucattelli ◽  
Yves Donati ◽  
...  

Oxygen-based therapies expose lung to elevated levels of ROS and induce lung cell damage and inflammation. Injured cells are replaced through increased proliferation and differentiation of epithelial cells and fibroblasts. Failure to modulate these processes leads to excessive cell proliferation, collagen deposition, fibrosis, and chronic lung disease. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA damage and participates in DNA repair, genomic integrity, and cell death. In this study, we evaluated the role of PARP-1 in lung repair during recovery after acute hyperoxia exposure. We exposed PARP-1 −/− and wild-type mice for 64 h to 100% hyperoxia and let them recover in air for 5–21 days. PARP-1-deficient mice exhibited significantly higher lung cell hyperplasia and proliferation than PARP-1 +/+ animals after 5 and 10 days of recovery. This was accompanied by an increased inflammatory response in PARP-1 −/− compared with wild-type animals, characterized by neutrophil infiltration and increased IL-6 levels in bronchoalveolar lavages. These lesions were reversible, since the extent of the hyperplastic regions was reduced after 21 days of recovery and did not result in fibrosis. In vitro, lung primary fibroblasts derived from PARP-1 −/− mice showed a higher proliferative response than PARP-1 +/+ cells during air recovery after hyperoxia-induced growth arrest. Altogether, these results reveal an essential role of PARP-1 in the control of cell repair and tissue remodeling after hyperoxia-induced lung injury.

2016 ◽  
Vol 311 (3) ◽  
pp. L581-L589 ◽  
Author(s):  
Liang-Jian Kuang ◽  
Ting-Ting Deng ◽  
Qin Wang ◽  
Shi-Lin Qiu ◽  
Yi Liang ◽  
...  

Dendritic cells and CD8+ T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40−/− mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40−/− dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40−/−) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40−/− mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40−/− cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1282-1282
Author(s):  
Manabu Matsunawa ◽  
Masashi Sanada ◽  
Ryo Yamamoto ◽  
Kenichi Yoshida ◽  
Yasunobu Nagata ◽  
...  

Abstract Abstract 1282 Emerging evidence is establishing a connection between MDS and spliceosome mutations. Spliceosome including SF3b1, U2AF1 and SRSF2 are frequently and exclusively mutated in myelodysplastic syndromes (MDS) and related myeloid neoplasms. Spliceosome mutations occur at varying frequencies in different disease subtypes. SF3B1 was shown to be highly associated with MDS characterized by increased ring sideroblasts and SRSF2 mutations are more prevalent in chronic myelomonocytic leukemia. In spite of the fact that the recent discovery constitutes a novel class of genomic lesions and defines an entirely new pathogenic pathway of leukaemogenesis, the pathogenesis of spliceosome mutation is not largely understood. To understanding the biological consequences of spliceosomal mutations, we previously reported mutant U2AF1 cause altered RNA splicing, and overexpressed mutant U2AF1 decrease in cell proliferarion. However, currently, no functional analysis of SRSF2 mutation has been published. SRSF2 belongs to the serine/arginine-rich (SR) protein family. SR proteins are a family of RNA binding proteins characterized by one or two RNA recognition motifs (RRMs) and a signature RS domain enriched with arginine and serine repeats (RS domain).Growing body of evidence suggests that SR protein may be directly involved in the process of carcinogenesis. Gene knockout experiment indicated SRSF2 is involved with specific pathways in regulating cell proliferation and genomic stability during mammalian organogenesis. In neck and head tumor, SRSF2 is frequently overexpressed. And upregulated SRSF2 increases missplicing and downregulates E-cadherin expression, which is an important tumor suppressor gene. Therefore SRSF2 potential function in tumorigenesis is suggested in epithelial cancers. SRSF2 mutations with MDS exclusively occur at P95 within an intervening sequence between RRM and RS domains, indicating a gain-of-function nature of these mutations. So, to clarify the biological role of SRSF2 mutations in leukemogenesis, we evaluated the oncogenic role of SRSF mutations by expressing a mutant SRSF2 allele in Jurkat cells. The cells transduced with a tumor-derived SRSF2 allele showed reduced cell proliferation and increased apoptosis compared to the mock and wild type SRSF2-transduced cells. Next we performed in vitro colony assay using a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-(CD34-KSL) cells) collected from C57BL/6 (B6)-Ly5.1 mouse that was retrovirally transduced with mock, mutant or wild-type SRSF2 construct. The mutant SRSF2-transduced cells showed reduced cell proliferation compared with mock- or wild-type SRSF2 transduced cells. Subsequently, we conducted bone marrow transplantaion assay. We collected CD34-KSL cells from B6-Ly5.1 mouse, and retrovirally transduce mock, mutant or wild-type SRSF2 construct, each harbouring the EGFP marker gene. And these cells were sorted by EGFP marker, and transplanted with competitor cells (B6-Ly5.1/5.2 F1 mice origin) into lethally irradiated B6-Ly5.2 mice. The wild-type SRSF2-transduced cells showed a lower reconstitution capacity than the mock-transduced cells. On the other hand, the recipients of the cells transduced with the mutant SRSF2 showed lower EGFP-positive cell chimaerism than those of the mock- or the wild-type SRSF2-transduced. Therefore, the mutant SRSF2 was indicated to have a negative effect on cellular proliferation capacity in vitro and in vivo, and a gain-of-function nature of these mutations is suggested. These results are similar to the effect of U2AF1 mutant, which we reported mutant U2AF1 transduced TF-1 and HeLa cells present with a decrease in cell proliferation and hematopoietic stem cells expressing mutant U2AF1 also displayed lower reconstitution capacity by competitive reconstitution assay in mice. So far, the mechanism responsible for the growth advantage of mutant cells in patient is unclear. We furthermore observe hematopoietic phenotype of the bone marrow transplanted model mouse. SRSF2 mutations can coexist with mutations in TET2, ASXL1 and RUNX1. Therefore we performed additionally bone marrow transplantation assay, utilizing hematopoietic cells derived from TET2 knockdown mice, as a model of multistep carcinogenesis. We will present the results of our biological assay on the SRSF2 mutations and discuss the pathogenesis of MDS. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Adam D Gracz ◽  
Leigh Ann Samsa ◽  
Matthew J Fordham ◽  
Danny C Trotier ◽  
Bailey Zwarycz ◽  
...  

Background & AimsThe intestinal epithelium is maintained by intestinal stem cells (ISCs), which produce post-mitotic absorptive and secretory epithelial cells. Initial fate specification toward enteroendocrine, goblet, and Paneth cell lineages is dependent on Atoh1, a master regulator of secretory differentiation. However, the origin of tuft cells, which participate in Type II immune responses to parasitic infection, is less clear and appears to occur in an Atoh1-independent manner. Here we examine the role of Sox4 in ISC proliferation and differentiation.MethodsWe used mice with intestinal epithelial-specific conditional knockout of Sox4 (Sox4fl/fl:vilCre; Sox4cKO) to study the role of Sox4 in the small intestine. Crypt- and single cell-derived organoids were used to assay proliferation and ISC potency between control and Sox4cKO mice. Lineage allocation and genetic consequences of Sox4 ablation were studied by immunofluorescence, RT-qPCR, and RNA-seq. In vivo infection with helminths and in vitro cytokine treatment in primary intestinal organoids were used to assess tuft cell hyperplasia in control and Sox4cKO samples. Atoh1GFP reporter mice and single cell RNA-seq (scRNA-seq) were used to determine co-localization of SOX4 and Atoh1. Wild-type and inducible Atoh1 knockout (Atoh1fl/fl:vilCreER; Atoh1iKO) organoids carrying an inducible Sox4 overexpression vector (Sox4OE) were used to determine the role of Atoh1 in Sox4 driven secretory differentiation.ResultsLoss of Sox4 impairs ISC function and secretory differentiation, resulting in decreased numbers of enteroendocrine and tuft cells. In wild-type mice, SOX4+ cells are significantly upregulated following helminth infection coincident with tuft cell hyperplasia. Sox4 is activated by IL13 in vitro and Sox4cKO knockout mice demonstrate impaired tuft cell hyperplasia and parasite clearance following infection with helminths. A subset of Sox4-expressing cells colocalize with Atoh1 and enteroendocrine markers by scRNA-seq, while Sox4+/Atoh1-cells correlate strongly with tuft cell populations. Gain-of-function studies in primary organoids demonstrate that Sox4 is sufficient to drive both enteroendocrine and tuft cell differentiation, and can do so in the absence of Atoh1.ConclusionOur data demonstrate that Sox4 promotes enteroendocrine and tuft cell lineage allocation independently of Atoh1. These results challenge long-standing views of Atoh1 as the sole regulator of secretory differentiation in the intestine and are relevant for understanding host epithelial responses to parasitic infection.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 759
Author(s):  
Gaku Yamanaka ◽  
Fuyuko Takata ◽  
Yasufumi Kataoka ◽  
Kanako Kanou ◽  
Shinichiro Morichi ◽  
...  

Pericytes are a component of the blood–brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.


2004 ◽  
Vol 78 ◽  
pp. 741-742
Author(s):  
I Rama ◽  
M Riera ◽  
J Torras ◽  
J M Cruzado ◽  
I Herrero-Fresneda ◽  
...  

2017 ◽  
Vol 312 (2) ◽  
pp. G103-G111 ◽  
Author(s):  
Sabrina Jeppsson ◽  
Shanthi Srinivasan ◽  
Bindu Chandrasekharan

We have demonstrated that neuropeptide Y (NPY), abundantly produced by enteric neurons, is an important regulator of intestinal inflammation. However, the role of NPY in the progression of chronic inflammation to tumorigenesis is unknown. We investigated whether NPY could modulate epithelial cell proliferation and apoptosis, and thus regulate tumorigenesis. Repeated cycles of dextran sodium sulfate (DSS) were used to model inflammation-induced tumorigenesis in wild-type (WT) and NPY knockout ( NPY−/−) mice. Intestinal epithelial cell lines (T84) were used to assess the effects of NPY (0.1 µM) on epithelial proliferation and apoptosis in vitro. DSS-WT mice exhibited enhanced intestinal inflammation, polyp size, and polyp number (7.5 ± 0.8) compared with DSS- NPY−/− mice (4 ± 0.5, P < 0.01). Accordingly, DSS-WT mice also showed increased colonic epithelial proliferation (PCNA, Ki67) and reduced apoptosis (TUNEL) compared with DSS- NPY−/− mice. The apoptosis regulating microRNA, miR-375, was significantly downregulated in the colon of DSS-WT (2-fold, P < 0.01) compared with DSS- NPY−/−-mice. In vitro studies indicated that NPY promotes cell proliferation (increase in PCNA and β-catenin, P < 0.05) via phosphatidyl-inositol-3-kinase (PI3-K)-β-catenin signaling, suppressed miR-375 expression, and reduced apoptosis (increase in phospho-Bad). NPY-treated cells also displayed increased c-Myc and cyclin D1, and reduction in p21 ( P < 0.05). Addition of miR-375 inhibitor to cells already treated with NPY did not further enhance the effects induced by NPY alone. Our findings demonstrate a novel regulation of inflammation-induced tumorigenesis by NPY-epithelial cross talk as mediated by activation of PI3-K signaling and downregulation of miR-375. NEW & NOTEWORTHY Our work exemplifies a novel role of neuropeptide Y (NPY) in regulating inflammation-induced tumorigenesis via two modalities: first by enhanced proliferation (PI3-K/pAkt), and second by downregulation of microRNA-375 (miR-375)-dependent apoptosis in intestinal epithelial cells. Our data establish the existence of a microRNA-mediated cross talk between enteric neurons producing NPY and intestinal epithelial cells, and the potential of neuropeptide-regulated miRNAs as potential therapeutic molecules for the management of inflammation-associated tumors in the gut.


Sign in / Sign up

Export Citation Format

Share Document