scholarly journals Lung eosinophils increase vagus nerve-mediated airway reflex bronchoconstriction in mice

2020 ◽  
Vol 318 (2) ◽  
pp. L242-L251 ◽  
Author(s):  
Zhenying Nie ◽  
Jessica N. Maung ◽  
David B. Jacoby ◽  
Allison D. Fryer

Eosinophils mediate airway hyperresponsiveness by increasing vagally mediated reflex bronchoconstriction. Here, we tested whether circulating or airway eosinophils change nerve function. Airway resistance in response to aerosolized 5-hydroxytryptamine (5-HT, 10–300 mM) was measured in wild-type mice or transgenic mice that overexpress IL5 in T cells (+IL5T), overexpress IL5 in airway epithelium (+IL5AE), or overexpress IL5 but are devoid of eosinophils (+IL5AE/−Eos). Inflammatory cells in bronchoalveolar lavage (BAL), blood, and bone marrow were quantified. Blood eosinophils were increased in +IL5T and +IL5AE mice compared with wild-type mice. +IL5T mice had increased eosinophils in bone marrow while +IL5AE mice had increased eosinophils in BAL. Eosinophils surrounding large airways were significantly increased only in +IL5AE mice. With intact vagal innervation, aerosolized 5-HT significantly increased airway resistance in +IL5AE mice. 5-HT-induced bronchoconstriction was blocked by vagotomy or atropine, demonstrating that it was mediated via a vagal reflex. Airway resistance was not increased in +IL5AE/−Eos mice, demonstrating that it required lung eosinophils, but was not affected by increased bone marrow or blood eosinophils or by increased IL5 in the absence of eosinophils. Eosinophils did not change M3 function on airway smooth muscle, since airway responses to methacholine in vagotomized mice were not different among strains. Eosinophils surrounding large airways were sufficient, even in the absence of increased IL5 or external insult, to increase vagally mediated reflex bronchoconstriction. Specifically blocking or reducing eosinophils surrounding large airways may effectively inhibit reflex hyperresponsiveness mediated by vagus nerves in eosinophilic asthma.

Author(s):  
Mortimer Korf-Klingebiel ◽  
Marc R. Reboll ◽  
Felix Polten ◽  
Natalie Weber ◽  
Felix Jäckle ◽  
...  

Background: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete myeloid-derived growth factor (MYDGF) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. Methods: We defined the cellular sources and function of MYDGF in wild-type, Mydgf -deficient ( Mydgf -/- ), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca 2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. Results: MYDGF protein abundance increased in the left ventricular (LV) myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf -/- mice had no apparent phenotype at baseline, they developed more severe LV hypertrophy and contractile dysfunction during pressure overload than wild-type mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein coupled receptor agonist-induced hypertrophy and augmented sarco/endoplasmic reticulum Ca 2+ ATPase 2a (SERCA2a) expression in cultured neonatal rat cardiomyocytes by enhancing PIM1 serine/threonine kinase expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf -/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca 2+ cycling and sarcomere function compared to cardiomyocytes from pressure-overloaded wild-type mice. Transplanting Mydgf -/- mice with wild-type bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf -/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded wild-type mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated LV hypertrophy and dysfunction, and improved survival. Conclusions: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


2015 ◽  
Vol 308 (1) ◽  
pp. L96-L103 ◽  
Author(s):  
Loes E. M. Kistemaker ◽  
Ronald P. van Os ◽  
Albertina Dethmers-Ausema ◽  
I. Sophie T. Bos ◽  
Machteld N. Hylkema ◽  
...  

Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M3 receptor-deficient mice (M3R−/−) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M3 receptors are present on almost all cell types, and in this study we investigated the relative contribution of M3 receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M3R−/− bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R−/− animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M3R−/− animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6–2.5 fold). These findings indicate that the M3 receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M3 receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177.


2021 ◽  
Vol 22 (2) ◽  
pp. 772
Author(s):  
Javier Conde ◽  
Marlene Schwarzfischer ◽  
Egle Katkeviciute ◽  
Janine Häfliger ◽  
Anna Niechcial ◽  
...  

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1β and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1β via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Takashima ◽  
S Usui ◽  
S Matsuura ◽  
C Goten ◽  
O Inoue ◽  
...  

Abstract Background In our previous 5-year cohort study, we demonstrated that low gene expression of nerve growth factor receptor (NGFR) in peripheral leucocytes in acute coronary syndrome (ACS) predicted repetitive coronary interventions at the de novo lesions. An NGFR-positive cell has been demonstrated to reside in bone marrow (BM) stromal fraction and to be increased in peripheral blood mononuclear cell (MNCs) fraction in patients with ischemic heart disease. Purpose To investigate whether the BM-NGFR+ cell is associated with arterial remodeling and the relationship between the levels of peripheral NGFR+ cells after ACS and coronary plaque progression in an experimental and prospective clinical study. Methods and results In an experimental study, 8-week-old C57B6/J wild type male mice were subjected to irradiation with 9.6 Gy and transplantation with BM (BMT) isolated from GFP-transgenic NGFR wild type (WT) or knock-out (KO) mice at day 1. Four weeks after BMT, the right carotid artery was ligated for 4 weeks. Induced neointimal area was increased (p<0.05), where cells under apoptosis were decreased (p<0.05) in NGFR-KO-BMT group compared to WT-BMT group (n=4). NGFR+ cells were not detected in wild type sham-operated artery, whereas in the ligated artery in WT-BMT group NGFR+ cells assembled in the developed neointima and exclusively presented double positive with GFP, but absent in NGFR-KO-BMT group (p<0.05, n=4). In a clinical study, thirty patients with ACS who underwent primary percutaneous coronary intervention (PCI) were enrolled. The peripheral blood sample was collected on days 0, 3 and 7, and 9 months follow-up and the number of NGFR+MNCs were measured by flowcytometric analysis. The plaque volume at non-targeted coronary lesion (non-TL:>5 mm proximal or distal to the implanted stents) were quantitatively analysed using gray-scale intravascular ultrasound (IVUS) and Q-IVUS™ software at the acute phase and 9 months follow-up. The number of NGFR+MNCs in peripheral blood was 1.5-fold increased at day 3 (0.064±0.056%) compared to day 0 (0.042±0.030%) (p<0.05). The change in normalized total plaque volume (TAVN) at non-TL at 9 months was negatively correlated with the number of NGFR+MNCs at day 0 (r=−0.51), day 3 (r=−0.51) and 9 months (r=−0.59) after ACS (p<0.05). Multiple regression analysis showed that NGFR+MNCs at day 0 (β=−0.48, p=0.01) and CRP (β=−0.53, P<0.01) are independent factors associating with TAVN change at non-TL at 9 months, regardless of LDL-cholesterol control level. ROC analysis revealed that NGFR+MNCs <0.049 at day 0 predicted the increase of TAVN with AUC 0.78; sensitivity 0.82 and specificity 0.67. Conclusions Bone marrow-derived peripheral NGFR+ cells negatively regulate arterial remodeling through appropriate apoptosis of neointimal cells and the peripheral level of NGFR+ cells in ACS predicts plaque progression at the non-targeted lesion. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): KAKENHI


2021 ◽  
Vol 22 (14) ◽  
pp. 7565
Author(s):  
Kyungho Woo ◽  
Dong Ho Kim ◽  
Man Hwan Oh ◽  
Ho Sung Park ◽  
Chul Hee Choi

Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Feixiang Chen ◽  
Weihuang Liu ◽  
Qiang Zhang ◽  
Ping Wu ◽  
Ao Xiao ◽  
...  

AbstractPeripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jin-Ran Chen ◽  
Haijun Zhao ◽  
Umesh D. Wankhade ◽  
Sree V. Chintapalli ◽  
Can Li ◽  
...  

AbstractThe G protein-coupled receptor 109 A (GPR109A) is robustly expressed in osteoclastic precursor macrophages. Previous studies suggested that GPR109A mediates effects of diet-derived phenolic acids such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on promoting bone formation. However, the role of GPR109A in metabolic bone homeostasis and osteoclast differentiation has not been investigated. Using densitometric, bone histologic and molecular signaling analytic methods, we uncovered that bone mass and strength were significantly higher in tibia and spine of standard rodent diet weaned 4-week-old and 6-month-old GPR109A gene deletion (GPR109A−/−) mice, compared to their wild type controls. Osteoclast numbers in bone and in ex vivo bone marrow cell cultures were significantly decreased in GPR109A−/− mice compared to wild type controls. In accordance with these data, CTX-1 in bone marrow plasma and gene expression of bone resorption markers (TNFα, TRAP, Cathepsin K) were significantly decreased in GPR109A−/− mice, while on the other hand, P1NP was increased in serum from both male and female GPR109A−/− mice compared to their respective controls. GPR109A deletion led to suppressed Wnt/β-catenin signaling in osteoclast precursors to inhibit osteoclast differentiation and activity. Indeed, HA and 3-3-PPA substantially inhibited RANKL-induced GPR109A expression and Wnt/β-catenin signaling in osteoclast precursors and osteoclast differentiation. Resultantly, HA significantly inhibited bone resorption and increased bone mass in wild type mice, but had no additional effects on bone in GPR109A−/− mice compared with their respective untreated control mice. These results suggest an important role for GPR109A during osteoclast differentiation and bone resorption mediating effects of HA and 3-3-PPA on inhibiting bone resorption during skeletal development.


Sign in / Sign up

Export Citation Format

Share Document