scholarly journals Production of VEGF receptor 1 and 2 mRNA and protein during endochondral bone repair is differential and healing phase specific

2010 ◽  
Vol 109 (6) ◽  
pp. 1930-1938 ◽  
Author(s):  
Marie K. Reumann ◽  
Turya Nair ◽  
Olga Strachna ◽  
Adele L. Boskey ◽  
Philipp Mayer-Kuckuk

Physiological disturbances, including temporary hypoxia, are expected to drive angiogenesis during bone repair. Evidence suggests that the angiogenic ligand vascular endothelial growth factor (VEGF)-A plays an important role in this process. We characterized the expression of two receptors that are essential for mediating VEGF signaling, VEGFR1/Flt-1 and VEGFR2/Flk-1/KDR, in a mouse rib fracture model. Their mRNA and protein levels were assessed in four healing phases, which were characterized histologically as hemorrhage formation on postfracture day (PFD) 1, inflammatory response on PFD 3, initiation of callus development on PFD 7, and the presence of a mature callus on PFD 14. Transcript was detected for VEGFR1 and VEGFR2, as well as VEGF. While mRNA expression of VEGFR1 was monophasic throughout all healing phases, VEGFR2 showed a biphasic profile with significantly increased mRNA expression during callus formation and maturation. Expression of VEGF mRNA was characterized by a more gradual increase during callus formation. The protein level for VEGFR1 was below detection sensitivity during the initial healing phase. It was then restored to a stable level, detectable through the subsequent healing phases. Hence, the VEGFR1 protein levels partially mirrored the transcript expression profile. In comparison, the protein level of VEGFR2 increased gradually during the healing phases and peaked at callus maturation. This correlated well with the transcriptional expression of VEGFR2. Intact bone from age-matched male mice had considerable protein levels of VEGFR1 and VEGF, but no detectable VEGFR2. Together, these findings uncovered expression signatures of the VEGF-VEGFR axis in endochondral bone repair.

1999 ◽  
Vol 277 (2) ◽  
pp. H595-H602 ◽  
Author(s):  
Jian-Wei Gu ◽  
Ann L. Brady ◽  
Vivek Anand ◽  
Michael C. Moore ◽  
Whitney C. Kelly ◽  
...  

We tested whether adenosine has differential effects on vascular endothelial growth factor (VEGF) expression under normoxic and hypoxic conditions, and whether A1 or A2 receptors (A1R; A2R) mediate these effects. Myocardial vascular smooth muscle cells (MVSMCs) from dog coronary artery were exposed to hypoxia (1% O2) or normoxia (20% O2) in the absence and presence of adenosine agonists or antagonists for 18 h. VEGF protein levels were measured in media with ELISA. VEGF mRNA expression was determined with Northern blot analysis. Under normoxic conditions, the adenosine A1R agonists, N 6-cyclopentyladenosine and R(-)- N 6-(2-phenylisopropyl)adenosine did not increase VEGF protein levels at A1R stimulatory concentrations. However, adenosine (5 μM) and the adenosine A2R agonist N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)]ethyl adenosine (DPMA; 100 nM) increased VEGF protein levels by 51 and 132% and increased VEGF mRNA expression by 44 and 90%, respectively, in cultured MVSMCs under normoxic conditions. Hypoxia caused an approximately fourfold increase in VEGF protein and mRNA expression, which could not be augmented with exogenous adenosine, A2R agonist (DPMA), or A1R agonist [1,3-diethyl-8-phenylxanthine (DPX)]. The A2R antagonist 8-(3-chlorostyryl)-caffeine completely blocked adenosine-induced VEGF protein and mRNA expression and decreased baseline VEGF protein levels by up to ∼60% under normoxic conditions but only by ∼25% under hypoxic conditions. The A1R antagonist DPX had no effect. These results are consistent with the hypothesis that 1) adenosine increases VEGF protein and mRNA expression by way of A2R. 2) Adenosine plays a major role as an autocrine factor regulating VEGF expression during normoxic conditions but has a relatively minor role during hypoxic conditions. 3) Endogenous adenosine can account for the majority of basal VEGF secretion by MVSMCs under normoxic conditions and could therefore be a maintenance factor for the vasculature.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Danfeng Ye ◽  
Meifang Li ◽  
Yuehui Zhang ◽  
Xinhua Wang ◽  
Hua Liu ◽  
...  

The aim of the study is to investigate the molecular mechanism behind androgen reduction in porcine granulosa cells (pGCs) withSalvia miltiorrhizaBunge extract cryptotanshinone. PGCs were isolated from porcine ovaries and identified. Androgen excess model of the pGCs was induced with the MAPK inhibitor PD98059 and then treated with cryptotanshinone. The testosterone level was measured by radioimmunoassay in the culture media. The protein levels of P-ERK1/2, c-Fos, and CYP17 in the cells were measured by western blot. Cryptotanshinone decreased the concentration of testosterone and the protein level of CYP17 and increased the protein levels of P-ERK1/2 and c-Fos in the androgen excess mode. After the c-Fos gene was silenced by infection with c-Fos shRNA lentivirus, we measured the mRNA expression by quantitative RT-PCR and protein level by western blot of P-ERK1/2, c-Fos, and CYP17. This showed that the mRNA expression and protein level of P-ERK1/2 and c-Fos were significantly reduced in the shRNA–c-Fos group compared to the scrambled group, while those of CYP17 were significantly increased. So we concluded that cryptotanshinone can significantly reduce the androgen excess induced by PD98059 in pGCs. The possible molecular mechanism for this activity is regulating the ERK/c-Fos/CYP17 pathway.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1259
Author(s):  
Anna Bogacz ◽  
Przemysław Ł. Mikołajczak ◽  
Marlena Wolek ◽  
Aleksandra Górska ◽  
Michał Szulc ◽  
...  

The aim of the study was to investigate combined effects of flavonoids (apigenin, baicalein, chrysin, quercetin, and scutellarin) and methyldopa on the expression of selected proinflammatory and vascular factors in vitro for prediction of their action in pregnancy-induced hypertension. The research was conducted on a trophoblast-derived human choriocarcinoma cell line and a primary human umbilical vein endothelial cell line. Cytotoxicity of compounds in selected concentrations (20, 40, and 100 µmol) was measured using the MTT test and the concentration of 40 µmol was selected for further analysis. Subsequently, their effects with methyldopa on the expression of selected markers responsible for inflammation (TNF-α; IL-1β; IL-6) and vascular effects (hypoxia-inducible factor 1α—HIF-1α; placental growth factor—PIGF; transforming growth factor β—TGF-β; vascular endothelial growth factor—VEGF) at the mRNA and protein levels were assessed. It was found that every combined administration of a flavonoid and methyldopa in these cells induced a down-regulating effect on all tested factors, except PIGF, especially at the mRNA expression level. As hypertension generally raises TNF-α, IL-1β, IL-6, HIF-1α, TGF-β, and VEGF mRNA expression and/or protein levels, the results obtained in the studied model may provide a positive prognostic factor for such activity in vivo.


2005 ◽  
Vol 288 (4) ◽  
pp. G616-G620 ◽  
Author(s):  
Xuesong Chen ◽  
Hai-Ying Zhang ◽  
Kristin Pavlish ◽  
Joseph N. Benoit

Previous studies have shown that impaired vasoconstrictor function in chronic portal hypertension is mediated via cAMP-dependent events. Recent data have implicated two small heat-shock proteins (HSP), namely HSP20 and HSP27, in the regulation of vascular tone. Phosphorylation of HSP20 is associated with vasorelaxation, whereas phosphorylation of HSP27 is associated with vasoconstriction. We hypothesized that alterations in the expression and/or phosphorylation of small HSPs may play a role in impaired vasoconstriction in portal hypertension. A rat model of prehepatic chronic portal hypertension was used. Studies were conducted in small mesenteric arteries isolated from normal and portal hypertensive rats. Protein levels of HSP20 and HSP27 were detected by Western blot analysis. Protein phosphorylation was analyzed by isoelectric focusing. HSP20 mRNA expression was determined by RT-PCR. To examine the role of cAMP in the regulation of small HSP phosphorylation and expression, we treated both normal and portal hypertensive vessels with a PKA inhibitor Rp-cAMPS. We found both an increased HSP20 phosphorylation and a decreased HPS20 protein level in portal hypertension, both of which were restored to normal by PKA inhibition. However, PKA did not change HSP20 mRNA expression. We conclude that decreased HSP20 protein level is mediated by cAMP-dependent pathway and that impaired vasoconstrictor function in portal hypertension may be partially explained by decreased expression of HSP20. We also suggest that the phosphorylation of HSP20 by PKA may alter HSP20 turnover.


2003 ◽  
Vol 285 (1) ◽  
pp. L161-L168 ◽  
Author(s):  
Gayle E. Hosford ◽  
David M. Olson

Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation and is a key mechanism regulating alveolarization in lungs of newborn rats. Hyperoxia exposure (>95% O2 days 4–14) arrests lung alveolarization and may do so through suppression of the VEGF signaling system. Lung tissue mRNA levels of HIF-2α and VEGF increased from days 4–14 in normoxic animals, but hyperoxia suppressed these increases. Levels of HIF-2α and VEGF mRNA were correlated in the air but not the O2-treated group, suggesting that the low levels of HIF-2α observed at high O2 concentrations are not stimulating VEGF expression. VEGF164 protein levels increased with developmental age, and with hyperoxia to day 9, but continuing hyperoxia decreased levels by day 12. VEGFR1 and VEGFR2 mRNA expression also increased in air-exposed animals, and these, too, were significantly decreased by hyperoxia by day 9 and day 12, respectively. Receptor protein levels did not increase with development; however, O2 did decrease protein to less than air values. Hyperoxic suppression of VEGF signaling from days 9–14 may be one mechanism by which alveolarization is arrested.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xi Xie ◽  
Chen Chen ◽  
Cang-Bao Xu ◽  
Jie Lin ◽  
Lei Cao ◽  
...  

Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular diseases. The current study explored the effect of mmLDL on the endothelin type A (ETA) receptor in mouse mesenteric arteries in vivo, as well as the role of autophagy in this process. mmLDL was injected via the caudal vein, and the Class III PI3K autophagic pathway inhibitor 3-methyladenine (3-MA) was injected intraperitoneally. The animals were divided into physiological saline (NS), mmLDL, and mmLDL + 3-MA groups. The dose-effect curve of endothelin-1- (ET-1-) induced mesenteric artery contraction was measured using myography, while ETA receptor mRNA expression was detected using real-time polymerase chain reactions, and the protein levels of the ETA receptor, class III PI3K, Beclin-1, LC3 II/I, p62, NF-κB, and p-NF-κB were observed using Western blot analysis. mmLDL significantly strengthened ET-1-induced contraction (the Emax value increased from 184.87 ± 7.46% in the NS group to 319.91 ± 20.31% in the mmLDL group (P<0.001), and the pEC50 value increased from 8.05 ± 0.05 to 9.11 ± 0.09 (P<0.01). In addition to upregulating the protein levels of Class III PI3K, Beclin-1, and LC3 II/I and downregulating that of p62, mmLDL significantly increased the mRNA expression and protein level of the ETA receptor and increased the protein level of p-NF-κB. However, these effects were significantly inhibited by 3-MA. mmLDL activates autophagy via the Class III PI3K/Beclin-1 pathway and upregulates the ETA receptor via the downstream NF-κB pathway. Understanding the effect of mmLDL on the ETA receptor and the underlying mechanisms may provide a new idea for the prevention and treatment of cardiovascular diseases.


2014 ◽  
Vol 1 (1) ◽  
pp. 36 ◽  
Author(s):  
Siti Fatimah ◽  
Muji Rahayu ◽  
Siti Aminah

Background : Egg  is one of the animal protein source, which has delicious taste, easy to digest and highly nutritious. Besides its affordable price, its supply availability is unquestionable as well. However, due to its short storability, it requires special treatment, such as preserving, to store it for long period. One way to preserve the egg is by pickling egg, which generally requires seven to ten days of marinating. During the process of marinating, there will be a visual change of egg white and yolk. Their structures  will be more solid (the occurrence of thickening process) because salinization will lead to protein denaturalization. Consequently, it has an influence as well towards the content of egg white protein of duck egg. This study is aimed to explore the impact of various time of pickling egg towards egg white protein of duck egg. Method  : The study where takes place in a laboratories, is a true experimental study for the reason that the researcher must provide intervention, hence all of potentially confounding variables are manageable. Samples that had been used in this study are duck eggs which were bought from North Brebes. This study is expected to generate data from four various time of pickling egg and control (no treatment). Since there are four samples, accordingly the number of data resulted are twenty. The resulted data will be descriptively presented in table, graph, presentation, and narration. Result  : Protein level examination within duck white egg shows changes  in protein levels that occurs in every variation of pickling egg time, where the average results of the assay of duck egg white protein is 14.94% without treatment (control), in five days of pickling time is 13.68%, in seven days of pickling time is 13.29%, in nine days of pickling time is 12.87% and eleven days of pickling time is 12.78%. Conclusion  : There is a significant impact among the period of pickling time to the protein level degradation of duck white egg. Keywords : Duck egg, period of pickling time, level protein of duck white egg.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


2021 ◽  
pp. 251660852110112
Author(s):  
Kiran Buddharaju ◽  
Mahendra Javali ◽  
Anish Mehta ◽  
R Srinivasa ◽  
Purushottam Acharya

Background: Stroke is a major cause of neurological disability, which can be often predicted with serological markers. Glial-derived S100β protein is a potential biomarker for cerebral ischemia and may be helpful in predicting the severity, outcome, and recovery of stroke. Aim: This study aimed to study the role of S100β glial protein as a serological marker in predicting the severity of acute ischemic stroke (AIS), outcome, and functional recovery after 1 month. Methods: A hospital-based prospective case control study included 43 consecutive patients, >18 years old, who were admitted with acute middle cerebral artery (MCA) territory infarcts within 72 h of onset of neurological deficits. Control group comprised of 43 age-matched asymptomatic volunteers. Independent t-test and chi square test were used to compare the means and evaluate the association between protein level and various parameters. P ≤ .05 was statistically significant. Results: S100β protein level in AIS patients was significantly higher compared to controls ( P < .05). Elevated serum S100β protein level was found to be associated with larger infarct volumes, higher National Institute Health Stroke Scale scores, and higher modified Rankin Scale scores at admission ( P < .05). Patients with higher S100β protein levels at admission had poor recovery at 1 month compared to patients having normal S100β protein levels. Conclusion: S100β protein levels at admission after an acute MCA territory infarct may be used as a reliable serological tool in predicting the severity, outcome, and functional recovery in stroke.


Sign in / Sign up

Export Citation Format

Share Document