scholarly journals Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise

2014 ◽  
Vol 116 (5) ◽  
pp. 522-531 ◽  
Author(s):  
Aaron L. Baggish ◽  
Joseph Park ◽  
Pil-Ki Min ◽  
Stephanie Isaacs ◽  
Beth A. Parker ◽  
...  

Short nonprotein coding RNA molecules, known as microRNAs (miRNAs), are intracellular mediators of adaptive processes, including muscle hypertrophy, contractile force generation, and inflammation. During basal conditions and tissue injury, miRNAs are released into the bloodstream as “circulating” miRNAs (c-miRNAs). To date, the impact of extended-duration, submaximal aerobic exercise on plasma concentrations of c-miRNAs remains incompletely characterized. We hypothesized that specific c-miRNAs are differentially upregulated following prolonged aerobic exercise. To test this hypothesis, we measured concentrations of c-miRNAs enriched in muscle (miR-1, miR-133a, miR-499–5p), cardiac tissue (miR-208a), and the vascular endothelium (miR-126), as well as those important in inflammation (miR-146a) in healthy male marathon runners ( N = 21) at rest, immediately after a marathon (42-km foot race), and 24 h after the race. In addition, we compared c-miRNA profiles to those of conventional protein biomarkers reflective of skeletal muscle damage, cardiac stress and necrosis, and systemic inflammation. Candidate c-miRNAs increased immediately after the marathon and declined to prerace levels or lower after 24 h of race completion. However, the magnitude of change for each c-miRNA differed, even when originating from the same tissue type. In contrast, traditional biomarkers increased after exercise but remained elevated 24 h postexercise. Thus c-miRNAs respond differentially to prolonged exercise, suggesting the existence of specific mechanisms of c-miRNA release and clearance not fully explained by generalized cellular injury. Furthermore, c-miRNA expression patterns differ in a temporal fashion from corollary conventional tissue-specific biomarkers, emphasizing the potential of c-miRNAs as unique, real-time markers of exercise-induced tissue adaptation.

2016 ◽  
Vol 25 (2) ◽  
pp. 112-7
Author(s):  
Robert Stefanus ◽  
Sophie Yolanda ◽  
Radiana D. Antarianto

Background: Glial fibrillary acidic protein (GFAP) and heat shock protein -27 (HSP27) plasma can be used as the parameters of exercise-induced astrocyte reactivity. The American College of Sports Medicine (ACSM) recommends an exercise of 30 minutes or 10 minutes duration (each performing bout accumulated toward 30 minutes). The aim of this study was to compare GFAP and HSP27 plasma concentrations in young adults undergoing acute moderate-intensity aerobic exercise of different durations (10 minutes vs 30 minutes).Methods: An experimental study with pre-post design was conducted on 22 participants assigned to either 10 minutes or 30 minutes duration of single bout exercise. Blood sampling was performed before and after the exercise. GFAP and HSP27 plasma levels were measured with ELISA methods. Plasma GFAP and HSP27 levels before and after exercise were analyzed using paired t -test, while GFAP and HSP27 levels after exercise between the two groups were processed using unpaired t-test.Results: Plasma GFAP concentration decreased significantly (0,45 ng/mL) after 30 minutes of aerobic exercise (p<0.05). Plasma HSP27 concentration decreased significantly (1,71 ng/mL) after 10 minutes of aerobic exercise (p<0.05). No significant difference in plasma GFAP and HSP27 concentrations between 10 minutes (GFAP=0.49 ng/mL; HSP27=2.09 ng/mL) and 30 minutes duration of exercise (GFAP=0.45 ng/mL; HSP27=1,71 ng/mL).Conclusion: Acute moderate-intensity aerobic exercise with 10- and 30-minutes duration reduces the reactivity of astrocytes indication the increase of the synapse plasticity. The decrease in GFAP concentration occurred after 30 minutes of exercise and the decrease in HSP27 occurred after 10 minutes of exercise. These results showed that the body responds differently to different treatment duration in order to obtain the same effect on the body.


2021 ◽  
pp. 174702182110549
Author(s):  
Veronica M Smith ◽  
Poppy Watson ◽  
Steven Most

Research suggests that aerobic exercise (i.e., exercise aiming to improve cardiovascular fitness) promotes cognition, but the impact on memory specifically, is unclear. There is some evidence to suggest that as little as one session of post-learning exercise benefits memory consolidation. Furthermore, memory may be particularly facilitated by exercise when the individual is emotionally aroused while encoding stimuli. The current study tested whether exercise after exposure to neutral and emotional images improved memory consolidation of the items among university students. Ninety-nine students were randomly instructed to either exercise or not exercise after viewing a set of images that were positive, neutral, and negative in valence, and they were later tested on their memory. Although emotional images were remembered better than non-emotional images, the results suggested that exercise did not influence this effect or enhance consolidation of the items overall. Explanations and implications for these findings are discussed.


2020 ◽  
Vol 15 (11) ◽  
pp. 1238-1251
Author(s):  
Alfonso J Alfini ◽  
Junyeon Won ◽  
Lauren R Weiss ◽  
Casandra C Nyhuis ◽  
Alexander J Shackman ◽  
...  

Abstract Older adults comprise the fastest growing global demographic and are at increased risk of poor mental health outcomes. Although aerobic exercise and sleep are critical to the preservation of emotional well-being, few studies have examined their combined mood-enhancing effects, or the potential neural mechanisms underlying these effects. Here, we used a randomized crossover design to test the impact of acute exercise on mood and the intrinsic functional connectivity (iFC) of the cingulo-opercular network in physically healthy older adults. Wrist actigraphy provided objective indices of sleep. Results revealed that 30 min of moderate-intensity aerobic exercise acutely enhanced positive affect (PA) and reduced iFC between the cingulo-opercular network and the hippocampus. Both effects were magnified among older adults with greater sleep disturbance. Exercise-induced changes in hippocampal iFC mediated relations between sleep disturbance and exercise-induced increases in PA. These findings provide evidence that aerobic exercise enhances mood, that it does so by altering connectivity between the anterior insula—a key hub in the cingulo-opercular network—and the hippocampus and that lower sleep quality is a stronger predictor of these effects among older adults. These observations underscore the benefits of moderate-intensity exercise—a safe and scalable behavioral intervention—and provide new clues about the neural circuitry underlying the interactive effects of sleep and exercise on mood.


2021 ◽  
Author(s):  
Alba Navarro-Romero ◽  
Lorena Galera-López ◽  
Paula Ortiz-Romero ◽  
Alberto Llorente-Ovejero ◽  
Lucía de los Reyes-Ramírez ◽  
...  

Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild to moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no available treatments to ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with sub-chronic (10 d) JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiac function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.


1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


1986 ◽  
Vol 56 (01) ◽  
pp. 001-005 ◽  
Author(s):  
M Verstraete ◽  
C A P F Su ◽  
P Tanswell ◽  
W Feuerer ◽  
D Collen

SummaryPharmacokinetics and pharmacological effects of two intravenous doses of recombinant tissue-type plasminogen activator (rt-PA) (40 and 60 mg over 90 min) were determined in healthy volunteers. Mean maximum plasma concentrations were 1080 and 1560 ng/ml respectively. The steady state level during subsequent maintenance infusion of 30 mg over 6 h was 250 ng/ml. The pharmacokinetics of rt-PA showed a bi-exponential disappearance from plasma consistent with a 2-compartment model of t½α = 5.7 min, a t½β = 1.3 h and a total clearance of 380 ml/min.Mean fibrinogen levels at the end of the infusions of 40 mg or 60 mg rt-PA over 90 min, measured in thawed plasma samples collected on citrate/aprotinin, decreased to 74% and 57% of the preinfusion values respectively. Plasminogen fell to 55% and 48%, and α2-antiplasmin to 28% and 18% of initial values. No further decrease of these parameters was observed during the infusion of 30 mg rt-PA over 6 h. Only 2% of the preinfusion fibrinogen levels could be recovered as fibrinogen-fibrin degradation products. This moderate extent of systemic fibrinogenolysis is much less than that reported for therapeutic i.v. infusions of streptokinase.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic &#946;-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in &#946;-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of &#946;-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into &#946;-cells, resulting in enhanced &#946;-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of &#946;-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived &#946;-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michael V. Lombardo ◽  
Elena Maria Busuoli ◽  
Laura Schreibman ◽  
Aubyn C. Stahmer ◽  
Tiziano Pramparo ◽  
...  

AbstractEarly detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1017
Author(s):  
Thomas Müller ◽  
Lutz Lohse ◽  
Andreas Blodau ◽  
Katja Frommholz

Background: Vitamin D has a steroid- and an anabolic-resembling chemical structure. Vitamin D is essential for many processes in the human body after hydroxylation. Aims of the Study: To investigate the impact of 25-hydroxy-vitamin D plasma concentrations on the blood parameters number of erythrocytes, hematocrit, mean corpuscular hemoglobin and mean corpuscular volume. Methods: Serial assessments were done in 290 patients with multiple sclerosis and repeated after a mean interval of 245 days. A recommendation for vitamin D supplementation was given in case of a concentration lower than 20 ng/mL combined with a prescription of a formulation containing vitamin D but not vitamin K. Results: There was a fall of vitamin D in 119 subjects and a rise in 164, while no change appeared in 7 participants. When vitamin D values went down between both assessments moments, the computed increase of mean corpuscular haemoglobin was significantly lower compared with the rise of mean corpuscular haemoglobin associated with a vitamin D elevation. When vitamin D declined, the computed fall of mean corpuscular volume fall was significantly lower compared with the decrease of mean corpuscular volume, when vitamin D rose. Positive correlations were found between differences of vitamin D and mean corpuscular haemoglobin, respectively mean corpuscular volume. Inverse relations appeared between disparities of vitamin D and erythrocytes, respectively haematocrit. Conclusions: The elevation of vitamin D plasma levels provides enhanced preconditions for a better tissue oxygenation on a cellular level.


Sign in / Sign up

Export Citation Format

Share Document