Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes

2012 ◽  
Vol 92 (3) ◽  
pp. 1317-1358 ◽  
Author(s):  
Elise Balse ◽  
David F. Steele ◽  
Hugues Abriel ◽  
Alain Coulombe ◽  
David Fedida ◽  
...  

Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.


Author(s):  
András Varró ◽  
Jakub Tomek ◽  
Norbert Nagy ◽  
Laszlo Virag ◽  
Elisa Passini ◽  
...  

Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells, and their underlying ionic mechanisms. It is therefore critical to further unravel the patho-physiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodelling) are discussed. The focus is human relevant findings obtained with clinical, experimental and computational studies, given that interspecies differences make the extrapolation from animal experiments to the human clinical settings difficult. Deepening the understanding of the diverse patholophysiology of human cellular electrophysiology will help developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.



2016 ◽  
Vol 23 (11) ◽  
pp. R517-R525 ◽  
Author(s):  
Iman Azimi ◽  
Gregory R Monteith

A variety of studies have suggested that epithelial to mesenchymal transition (EMT) may be important in the progression of cancer in patients through metastasis and/or therapeutic resistance. A number of pathways have been investigated in EMT in cancer cells. Recently, changes in plasma membrane ion channel expression as a consequence of EMT have been reported. Other studies have identified specific ion channels able to regulate aspects of EMT induction. The utility of plasma membrane ion channels as targets for pharmacological modulation make them attractive for therapeutic approaches to target EMT. In this review, we provide an overview of some of the key plasma membrane ion channel types and highlight some of the studies that are beginning to define changes in plasma membrane ion channels as a consequence of EMT and also their possible roles in EMT induction.



2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhihan Zhao ◽  
Huan Lan ◽  
Ibrahim El-Battrawy ◽  
Xin Li ◽  
Fanis Buljubasic ◽  
...  

Background. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are providing new possibilities for the biological study, cell therapies, and drug discovery. However, the ion channel expression and functions as well as regulations in hiPSC-CMs still need to be fully characterized. Methods. Cardiomyocytes were derived from hiPS cells that were generated from two healthy donors. qPCR and patch clamp techniques were used for the study. Results. In addition to the reported ion channels, INa, ICa-L, ICa-T, If, INCX, IK1, Ito, IKr, IKs IKATP, IK-pH, ISK1–3, and ISK4, we detected both the expression and currents of ACh-activated (KACh) and Na+-activated (KNa) K+, volume-regulated and calcium-activated (Cl-Ca) Cl−, and TRPV channels. All the detected ion currents except IK1, IKACh, ISK, IKNa, and TRPV1 currents contribute to AP duration. Isoprenaline increased ICa-L, If, and IKs but reduced INa and INCX, without an effect on Ito, IK1, ISK1–3, IKATP, IKr, ISK4, IKNa, ICl-Ca, and ITRPV1. Carbachol alone showed no effect on the tested ion channel currents. Conclusion. Our data demonstrate that most ion channels, which are present in healthy or diseased cardiomyocytes, exist in hiPSC-CMs. Some of them contribute to action potential performance and are regulated by adrenergic stimulation.



2020 ◽  
Vol 117 (34) ◽  
pp. 20378-20389 ◽  
Author(s):  
Osama F. Harraz ◽  
David Hill-Eubanks ◽  
Mark T. Nelson

The phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), has long been established as a major contributor to intracellular signaling, primarily by virtue of its role as a substrate for phospholipase C (PLC). Signaling by Gq-protein–coupled receptors triggers PLC-mediated hydrolysis of PIP2into inositol 1,4,5-trisphosphate and diacylglycerol, which are well known to modulate vascular ion channel activity. Often overlooked, however, is the role PIP2itself plays in this regulation. Although numerous reports have demonstrated that PIP2is critical for ion channel regulation, how it impacts vascular function has received scant attention. In this review, we focus on PIP2as a regulator of ion channels in smooth muscle cells and endothelial cells—the two major classes of vascular cells. We further address the concerted effects of such regulation on vascular function and blood flow control. We close with a consideration of current knowledge regarding disruption of PIP2regulation of vascular ion channels in disease.



2007 ◽  
Vol 292 (3) ◽  
pp. C1053-C1060 ◽  
Author(s):  
Merzesh Magra ◽  
Steven Hughes ◽  
Alicia J. El Haj ◽  
Nicola Maffulli

Mechanosensitive and voltage-gated ion channels are known to perform important roles in mechanotransduction in a number of connective tissues, including bone and muscle. It is hypothesized that voltage-gated and mechanosensitive ion channels also may play a key role in some or all initial responses of human tenocytes to mechanical stimulation. However, to date there has been no direct investigation of ion channel expression by human tenocytes. Human tenocytes were cultured from patellar tendon samples harvested from five patients undergoing routine total knee replacement surgery (mean age: 66 yr; range: 63–73 yr). RT-PCR, Western blotting, and whole cell electrophysiological studies were performed to investigate the expression of different classes of ion channels within tenocytes. Human tenocytes expressed mRNA and protein encoding voltage-operated calcium channel (VOCC) subunits (Ca α1A, Ca α1C, Ca α1D, Ca α2δ1) and the mechanosensitive tandem pore domain potassium channel (2PK+) TREK-1. They exhibit whole cell currents consistent with the functional expression of these channels. In addition, other ionic currents were detected within tenocytes consistent with the expression of a diverse array of other ion channels. VOCCs and TREK channels have been implicated in mechanotransduction signaling pathways in numerous connective tissue cell types. These mechanisms may be present in human tenocytes. In addition, human tenocytes may express other channel currents. Ion channels may represent potential targets for the pharmacological management of chronic tendinopathies.



2009 ◽  
Vol 24 (1-2) ◽  
pp. 73-86 ◽  
Author(s):  
Kurt Pfannkuche ◽  
Huamin Liang ◽  
Tobias Hannes ◽  
Jiaoya Xi ◽  
Azra Fatima ◽  
...  


2013 ◽  
Vol 2013 ◽  
pp. 1-25 ◽  
Author(s):  
Leonhard Linta ◽  
Marianne Stockmann ◽  
Qiong Lin ◽  
André Lechel ◽  
Christian Proepper ◽  
...  

Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. Additionally, iPSCs express a much higher number of ion channels compared to keratinocytes. Further, to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny, namely, neurons and cardiomyocytes derived from iPS cells. To conclude, hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.



2021 ◽  
Author(s):  
Christina Schmid ◽  
Najah Abi-Gerges ◽  
Dietmar Zellner ◽  
Georg Rast

SUMMARYHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and primary human cardiomyocytes are used for in vitro cardiac safety testing. hiPSC-CMs have been associated with a vast heterogeneity regarding single-cell morphology, beating behavior and action potential duration, prompting a systematic analysis of single-cell characteristics. Previously published hiPSC-CM studies revealed action potentials with nodal-, atrial- or ventricular-like morphology, although ion channel expression of singular hiPSC-CMs is not fully understood. Other studies used single-cell RNA-sequencing, however, these studies did not extensively focus on expression patterns of cardiac ion channels or failed to detect ion channel transcripts. Thus, the current study used a single-cell patch-clamp-RT-qPCR approach to get insights into single-cell electrophysiology (capacitance, action potential duration at 90% of repolarization, upstroke velocity, spontaneous beat rate, and sodium-driven fast inward current) and ion channel expression (HCN4, CACNA1G, CACNA1D, KCNA5, KCNJ4, SCN5A, KCNJ2, CACNA1D, and KCNH2), the combination of both within individual cells, and their correlations in single cardiomyocytes. We used commercially available hiPSC-CMs (iCell cardiomyocytes, atrial and ventricular Pluricytes) and primary human adult atrial and ventricular cardiomyocytes. Recordings of electrophysiological parameters revealed differences between the cell groups and variation within the hiPSC-CMs groups as well as within primary ventricular cardiomyocytes. Expression analysis on mRNA level showed no-clear-cut discrimination between primary cardiac subtypes and revealed both similarities and differences between all cell groups. Higher expression of atrial-associated ion channels in primary atrial cardiomyocytes and atrial Pluricytes compared to their ventricular counterpart indicates a successful chamber-specific hiPSC differentiation. Interpretation of correlations between the single-cell parameters was challenging, as the total data set is complex, particularly for parameters depending on multiple processes, like the spontaneous beat rate. Yet, for example, expression of SCN5A correlated well with the fast inward current amplitude for all three hiPSC-CM groups. To further enhance our understanding of the physiology and composition of the investigated hiPSC-CMs, we compared beating and non-beating cells and assessed distributions of single-cell data. Investigating the single-cell phenotypes of hiPSC-CMs revealed a combination of attributes which may be interpreted as a mixture of traits of different adult cardiac cell types: (i) nodal-related pacemaking attributes are spontaneous generation of action potentials and high HCN4 expression; and (ii) non-nodal attributes: cells have a prominent INa-driven fast inward current, a fast upstroke velocity and a high expression of SCN5A. In conclusion, the combination of nodal- and non-nodal attributes in single hiPSC-CMs may hamper the interpretation of drug effects on complex electrophysiological parameters like beat rate and action potential duration. However, the proven expression of specific ion channels enables the evaluation of drug effects on ionic currents in a more realistic environment than in recombinant systems.



2021 ◽  
Vol 12 ◽  
Author(s):  
Núria Comes ◽  
Xavier Gasull ◽  
Gerard Callejo

Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.



1992 ◽  
Vol 70 (S1) ◽  
pp. S223-S238 ◽  
Author(s):  
H. Sontheimer

The electrophysiologist's view of brain astrocytes has changed markedly in recent years. In the past astrocytes were viewed as passive, K+ selective cells, but it is now evident that they are capable of expressing voltage- and ligand-activated channels previously thought to be restricted to neurons. The functional importance of most of these ion channels is not understood at present. However, from studies of astrocytes cultured from different species and brain regions, we learned that like their neuronal counterparts astrocytes are a heterogeneous group of brain cells showing similar heterogeneity in their ion-channel expression. Not only are subpopulations of astrocytes within areas of the brain equipped with specific sets of ion channels but, furthermore, regional heterogeneity is apparent. In addition, astrocyte ion channel expression is dynamic and changes during development. Some ion channels are only expressed postnatally, yet others appear to be expressed only during certain stages of development. Interestingly, the expression of some astrocyte channels, including Na+, Ca2+, and some K+ channels, appears to be controlled by neurons via mechanisms that are presently unknown. Some studies suggest roles for astrocyte channels in basic cell processes such as cell proliferation. Thus, although the role of some astrocyte channels remains unclear, our understanding of astrocyte physiology is starting to take shape and points towards roles of ion channels not involved in electrogenesis.Key words: astrocyte, ion channel, development, review, transmitter receptor.



Sign in / Sign up

Export Citation Format

Share Document