scholarly journals Effect of Precuring Warming on Mechanical Properties of Restorative Composites

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Kareem Nada ◽  
Omar El-Mowafy

To investigate the effect of prepolymerization warming on composites' mechanical properties, three composites were evaluated: Clearfil Majesty (CM) (Kuraray), Z-100 (3M/ESPE), and Light-Core (LC) (Bisco). Specimens were prepared from each composite at room temperature as control and 2 higher temperatures (37∘Cand54∘C) to test surface hardness (SH), compressive strength (CS), and diametral tensile strength (DTS). Data were statistically analyzed using ANOVA and Fisher's LSD tests. Results revealed that prewarming CM and Z100 specimens significantly improved their SH mean values (P<0.05). Prewarming also improved mean CS values of Z100 specimens (P<0.05). Furthermore, DTS mean value of CM prepared at52∘was significantly higher than that of room temperature specimens (P<0.05). KHN, CS, and DTS mean values varied significantly among the three composites. In conclusion, Prewarming significantly enhanced surface hardness of 2 composites. Prewarming also improved bulk properties of the composites; however, this improvement was significant in only some of the tested materials.

2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2007 ◽  
Vol 23 ◽  
pp. 123-126
Author(s):  
Radu L. Orban ◽  
Mariana Lucaci

This paper investigates the effect of Fe, Cr and B additions, in small proportions, as alloying elements in Ni3Al with the purpose to reduce its intrinsic fragility and extrinsic embrittlement and to enhance, in the same time, its mechanical properties. It represents a development of some previous research works of the authors, proving that Ni3Al-Fe-Cr-B alloys obtained by reactive synthesis (SHS) starting from Mechanically Alloyed powder mixtures have superior both room temperature tensile strength and ductility, and compression ones at temperatures up to 800 °C, than pure Ni3Al. These create premises for their using as superalloys substitutes.


2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2004 ◽  
Vol 12 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Eduardo Bresciani ◽  
Terezinha de Jesus Esteves Barata ◽  
Ticiane Cestari Fagundes ◽  
Akimi Adachi ◽  
Marina Martins Terrin ◽  
...  

The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation), with two new Brazilian GIC's: Vitro-Molar (DFL) and Bioglass R (Biodinamica), all indicated for the Atraumatic Restorative Treatment (ART) technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height) for the diametral tensile strength (DTS) test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height) for the compressive strength (CS) test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05). The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


Author(s):  
M. F. M. Tajudin ◽  
A. H. Ahmad ◽  
M. M. Rashidi

This paper highlights the effects of pouring temperature and holding time on the mechanical properties of aluminium 6061 semisolid feedstock billets. The semisolid metal feedstock billets were prepared by a direct thermal method (DTM), in which the molten metal was poured into a cylindrical copper mould with a different combination of pouring temperature and holding time before it was solidified in room temperature water. The results show that the sample with pouring temperature slightly above aluminium 6061 liquidus temperature has the lowest porosity, thereby the highest mechanical properties value. The sample with a pouring temperature of 660 °C and holding time of 60 s has the density, tensile strength and hardness properties of 2.701 g/cm3, 146.797 MPa, and 86.5 HV, respectively. Meanwhile, the sample at a pouring temperature of 640 °C and holding time of 20 s has density, tensile strength and hardness properties of 2.527 g/cm3, 65.39 MPa, and 71.79 HV, respectively. The density and fractography tests were conducted to confirm the existence of porosity within the samples. The results from these experimental works suggested that the mechanical properties of DTM semisolid feedstock billet merely depended on processing parameters, which influenced the porosity level within the feedstock billet, thus directly affected their mechanical properties.


2019 ◽  
Vol 54 (10) ◽  
pp. 1259-1271 ◽  
Author(s):  
Medhat Elwan ◽  
A Fathy ◽  
A Wagih ◽  
A R S Essa ◽  
A Abu-Oqail ◽  
...  

In the present study, the aluminum (Al) 1050–FeTiO3 composite was fabricated through accumulative roll bonding process, and the resultant mechanical properties were evaluated at different deformation cycles at ambient temperature. The effect of the addition of FeTiO3 particle on the microstructural evolution and mechanical properties of the composite during accumulative roll bonding was investigated. The Al–2, 4, and 8 vol.% FeTiO3 composites were produced by accumulative roll bonding at room temperature. The results showed improvement in the dispersions of the particles with the increase in the number of the rolling cycles. In order to study the mechanical properties, tensile and hardness tests were applied. It was observed that hardness and tensile strength improve with increasing accumulative roll bonding cycles. The microhardness and tensile strength of the final composites are significantly improved as compared to those of original raw material Al 1050 and increase with increasing volume fraction of FeTiO3, reaching a maximum of ∼75 HV and ∼169 MPa for Al–8 vol.% FeTiO3 at seventh cycle, respectively.


2019 ◽  
Vol 800 ◽  
pp. 331-335
Author(s):  
Ieva Bake ◽  
Vineta Afanasjeva ◽  
Silvija Kukle

The functionality of textiles can be complimented by using a wide variety of modification technologies. This study focuses on textile modification with sol-gel technology as a part of smart sock prototype development. Zinc acetate dehydrate (ZAD) is integrated in sol synthesis and used as modifier thus improving modified cotton yarn mechanical properties and also can prolong time between washing, taking into account modifiers antimicrobial properties. Four hanks of pure cotton yarns with length of 300 m, where modified with silica-based sol with 7,5 wt% ZAD as a modifier. As a part of this study tensile strength and elongation of yarn was determined and changes in liner density were observed. Average yarn linear density increases by 19 % and linear density for knitted samples increases by 2,6 %. Therefore, yarn strength for 80 % of modified samples shows mean value of 2,32 N, that is 17 % higher than unmodified samples.


Sign in / Sign up

Export Citation Format

Share Document