scholarly journals Mouse Models and Techniques for the Isolation of the Diabetic Endothelium

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
April L. Darrow ◽  
J. Gregory Maresh ◽  
Ralph V. Shohet

Understanding the molecular mechanisms underlying diabetic endothelial dysfunction is necessary in order to improve the cardiovascular health of diabetic patients. Previously, we described an in vivo, murine model of insulin resistance induced by feeding a high-fat diet (HFD) whereby the endothelium may be isolated by fluorescence-activated cell sorting (FACS) based on Tie2-GFP expression and cell-surface staining. Here, we apply this model to two new strains of mice, ScN/Tie2-GFP and ApoE(−/−)/Tie2-GFP, and describe their metabolic responses and endothelial isolation. ScN/Tie2-GFP mice, which lack a functional toll-like receptor 4 (TLR4), display lower fasting glucose and insulin levels and improved glucose tolerance compared to Tie2-GFP mice, suggesting that TLR4 deficiency decreases susceptibility to the development of insulin resistance. ApoE(−/−)/Tie2-GFP mice display elevated glucose and cholesterol levels versus Tie2-GFP mice. Endothelial isolation by FACS achieves a pure population of endothelial cells that retain GFP fluorescence and endothelial functions. Transcriptional analysis of the aortic and muscle endothelium isolated from ApoE(−/−)/Tie2-GFP mice reveals a reduced endothelial response to HFD compared to Tie2-GFP mice, perhaps resulting from preexisting endothelial dysfunction in the hypercholesterolemic state. These mouse models and endothelial isolation techniques are valuable for assessing diabetic endothelial dysfunction and vascular responses in vivo.

2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


2021 ◽  
Author(s):  
Leetah Senkpeil ◽  
Jyoti Bhardwaj ◽  
Morgan Little ◽  
Prasida Holla ◽  
Aditi Upadhye ◽  
...  

Baseline innate immune signatures can influence protective immunity following vaccination. Here, we used systems transcriptional analysis to assess the molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole sporozoite PfSPZ Vaccine in African infants. Innate immune activation and myeloid signatures at pre-vaccination baseline correlated with protection from Plasmodium falciparum infection in placebo controls, while the same signatures predicted susceptibility to infection among infants who received the highest and most protective dose of the PfSPZ Vaccine. Machine learning identified monocytes and an antigen presentation signature as pre-vaccination features predictive of malaria infection after highest-dose PfSPZ vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against malaria infection in mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data establish a dichotomous role of innate stimulation for malaria protection and induction of protective immunity of whole-sporozoite malaria vaccines.


2015 ◽  
Author(s):  
Osama H. Jiffri ◽  
Fadwa M. Al-Sharif ◽  
Essam H. Jiffri ◽  
Vladimir N. Uversky

Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with the all-cause and cardiovascular mortality. The present study aimed to analyze the abundance and functionality of intrinsically disordered regions in several biomarkers of insulin resistance, adiponectin, and endothelial dysfunction found in the T2DM patients. In fact, in comparison to controls, obese T2DM patients are known to have significantly higher levels of inter-cellular adhesion molecule (iCAM-1), vascular cell adhesion molecule (vCAM-1), and E-selectin, whereas their adiponectin levels are relatively low. Bioinformatics analysis revealed that these selected biomarkers (iCAM-1, vCAM-1, E-selectin, and adiponectin) are characterized by the noticeable levels of intrinsic disorder propensity and high binding promiscuity, which are important features expected for proteins serving as biomarkers. Within the limit of studied groups, there is an association between insulin resistance and both hypoadiponectinemia and endothelial dysfunction.


2019 ◽  
Vol 20 (8) ◽  
pp. 1819 ◽  
Author(s):  
Norihiko Sasaki ◽  
Yoko Itakura ◽  
Masashi Toyoda

Insulin in physiological concentrations is important to maintain vascular function. Moreover, vascular insulin resistance contributes to vascular impairment. In the elderly, other factors including hypertension, dyslipidemia, and chronic inflammation amplify senescence of vascular endothelial and smooth muscle cells. In turn, senescence increases the risk for vascular-related diseases such as arteriosclerosis, diabetes, and Alzheimer’s disease. Recently, it was found that GM1 ganglioside, one of the glycolipids localized on the cell membrane, mediates vascular insulin resistance by promoting senescence and/or inflammatory stimulation. First, it was shown that increased GM1 levels associated with aging/senescence contribute to insulin resistance in human aortic endothelial cells (HAECs). Second, the expression levels of gangliosides were monitored in HAECs treated with different concentrations of tumor necrosis factor-alpha (TNFα) for different time intervals to mimic in vivo acute or chronic inflammatory conditions. Third, the levels of insulin signaling-related molecules were monitored in HAECs after TNFα treatment with or without inhibitors of ganglioside synthesis. In this review, we summarize the molecular mechanisms of insulin resistance in aged/senescent and TNFα-stimulated endothelial cells mediated by gangliosides and highlight the possible roles of gangliosides in vascular insulin resistance-related diseases.


2003 ◽  
Vol 14 (3) ◽  
pp. 154-174 ◽  
Author(s):  
Tamizchelvi Thyagarajan ◽  
Satish Totey ◽  
Mary Jo S. Danton ◽  
Ashok B. Kulkarni

Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1868 ◽  
Author(s):  
Oihane Erice ◽  
Adrian Vallejo ◽  
Mariano Ponz-Sarvise ◽  
Michael Saborowski ◽  
Arndt Vogel ◽  
...  

Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
M. F. Fiordelisi ◽  
L. Auletta ◽  
L. Meomartino ◽  
L. Basso ◽  
G. Fatone ◽  
...  

Precision and personalized medicine is gaining importance in modern clinical medicine, as it aims to improve diagnostic precision and to reduce consequent therapeutic failures. In this regard, prior to use in human trials, animal models can help evaluate novel imaging approaches and therapeutic strategies and can help discover new biomarkers. Breast cancer is the most common malignancy in women worldwide, accounting for 25% of cases of all cancers and is responsible for approximately 500,000 deaths per year. Thus, it is important to identify accurate biomarkers for precise stratification of affected patients and for early detection of responsiveness to the selected therapeutic protocol. This review aims to summarize the latest advancements in preclinical molecular imaging in breast cancer mouse models. Positron emission tomography (PET) imaging remains one of the most common preclinical techniques used to evaluate biomarker expression in vivo, whereas magnetic resonance imaging (MRI), particularly diffusion-weighted (DW) sequences, has been demonstrated as capable of distinguishing responders from nonresponders for both conventional and innovative chemo- and immune-therapies with high sensitivity and in a noninvasive manner. The ability to customize therapies is desirable, as this will enable early detection of diseases and tailoring of treatments to individual patient profiles. Animal models remain irreplaceable in the effort to understand the molecular mechanisms and patterns of oncologic diseases.


2013 ◽  
Vol 6 ◽  
pp. LPI.S10805 ◽  
Author(s):  
Biswajit Mukherjee ◽  
Chowdhury M. Hossain ◽  
Laboni Mondal ◽  
Paramita Paul ◽  
Miltu K. Ghosh

A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, liver and pancreas. Deregulation of fatty acid metabolism is the main culprit for developing insulin resistance and type 2 diabetes. A predominant predisposing factor to developing obesity, insulin resistance and type 2 diabetes is the permanent elevation of free fatty acids in plasma followed by impaired utilization of lipids by muscle. Diabetes-induced inflammation and oxidative stress have also vital role for development of insulin resistance in diabetic patients. The present review is intended to describe the correlation between lipids, obesity and insulin resistance based on current literature, in order to elucidate involved molecular mechanisms in depth.


2008 ◽  
Vol 56 (5) ◽  
pp. 752-769 ◽  
Author(s):  
Erik R. Kline ◽  
Roy L. Sutliff

Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recentin vitroandin vivostudies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanisms for such long-term outcomes.Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors such as endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), and vascular endothelial growth factor (VEGF). ELISA was used to determinate levels of the first and second oxidation products of NO (nitrite, nitrate), ET1 and VEGF. Primary HUVECs collected after caesarean section were treated with different estradiol concentrations in vitro. Additionally, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we uncovered the methylation status of the MEG3 region.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS and VEGF along with elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. We confirmed the results from in vivo experiments by demonstrating that high estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, and VEGF secretion, which could account for the effects we observed in vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter.Conclusions: Our results demonstrated that increased expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS and VEGF along with higher secretion of ET1, which is closely related with endothelial dysfunction, together provide a potential mechanism addressing high risk of hypertension in IVF offspring.


Sign in / Sign up

Export Citation Format

Share Document