scholarly journals Polymer Composites Based on Plasticized PVC and Vulcanized Nitrile Rubber Waste Powder for Irrigation Pipes

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Maria Daniela Stelescu

The paper presents the technique of production and characterization of polymer composites based on plasticized PVC and rubber powder from vulcanized nitrile rubber waste. The new polymer composites have lower hardness, higher elongation at break, a better tensile strength, and better ozone resistance, and the blend suitable for irrigations pipes for agricultural use was selected. The selected polymer composites have a good behavior under accelerated aging, repeated flexion at room temperature and at low temperature (−20°C), a very good behavior for immersion in water, concentrated acid and basis, animal fat, soya, and sun flower oil, proving their suitability for gaskets, hoses, protection equipment, rubber footwear, and so forth. The resulted thermoplastic polymer composites can be processed by injection, extrusion, and compression molding.

2021 ◽  
Vol 7 (3) ◽  
pp. 733-737
Author(s):  
K.I.D.P. Perera ◽  
D.G. Edirisinghe ◽  
Laleen Karunanayake

Recycling of rubber waste materials in order to convert these to usable products is one of the main challenges in the rubber industry. Reclaiming of rubber waste and blending it with virgin rubber have increased during the past due to the growing concern on the environment and increase in the prices of synthetic rubbers. Hence, the aim of this study is to partially replace virgin nitrile rubber (NBR) with reclaimed compounded NBR latex waste to develop new rubber blends suitable for special applications. In this study, physico-mechanical properties, ageing performance and swelling behaviour of virgin NBR / reclaimed NBR blend vulcanizates were evaluated and compared with those of the control vulcanizate produced solely with virgin NBR. Results showed that replacement of 50% virgin NBR with reclaimed NBR retained 71-86% of tensile strength, elongation at break and resilience. Hardness and modulus of this blend vulcanizate increased by less than 18%, whereas abrasion volume loss and compression set increased by 27%. Ageing resistance is similar to that of the control vulcanizate. Interestingly, resistance to swelling in toluene and ASTM oil No.3 increased by 14% and 32%, respectively. Hence, the 50:50 virgin NBR / reclaimed NBR vulcanizate would be suitable for oil resistant applications.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2336 ◽  
Author(s):  
Marina Matos ◽  
Rosemeyre A. Cordeiro ◽  
Henrique Faneca ◽  
Jorge F. J. Coelho ◽  
Armando J. D. Silvestre ◽  
...  

The worldwide regulatory demand for the elimination of non-phthalate compounds for poly(vinyl chloride) (PVC) plasticization has intensified the search for alternatives. Concomitantly, sustainability concerns have highlighted sugar-based 2,5-furandicarboxylic acid as one key renewable-chemical for the development of several products, namely di(2-ethylhexyl) 2,5-furandicarboxylate (DEHF) plasticizer. This study addresses the use of DEHF under a realistic scenario of the co-existence of both DEHF and entirely fossil-based plasticizers. More precisely, original PVC blends using mixtures of non-toxic DEHF and di(2-ethylhexyl) terephthalate ester (DEHT) were designed. The detailed structural, thermal, and mechanical characterization of these materials showed that they all have a set of interesting properties that are compatible with those of commercial DEHT, namely a low glass transition (19.2–23.8 °C) and enhanced elongation at break (up to 330%). Importantly, migration tests under different daily situations, such as for example exudation from food/beverages packages and medical blood bags, reveal very low weight loss percentages. For example, in both distilled water and phosphate buffered saline (PBS) solution, weight loss does not exceed ca. 0.3% and 0.2%, respectively. Viability tests show, for the first time, that up to 500 μM of DEHF, a promising cytotoxic profile is observed, as well as for DEHT. Overall, this study demonstrates that the combination of DEHF and DEHT plasticizers result in a noticeable plasticized PVC with an increased green content with promising cytotoxic results.


2007 ◽  
Author(s):  
DEBRA A. WROBLESKI ◽  
DAVID A. LANGLOIS ◽  
E. BRUCE ORLER ◽  
ANDREA LABOURIAU ◽  
MARIANA M. URIBE ◽  
...  
Keyword(s):  

2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


Author(s):  
Sachin Tejyan ◽  
Divyesh Sharma ◽  
Brijesh Gangil ◽  
Amar Patnaik ◽  
Tej Singh

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 303
Author(s):  
Rokayya Sami ◽  
Schahrazad Soltane ◽  
Mahmoud Helal

In the current work, the characterization of novel chitosan/silica nanoparticle/nisin films with the addition of nisin as an antimicrobial technique for blueberry preservation during storage is investigated. Chitosan/Silica Nanoparticle/N (CH-SN-N) films presented a stable suspension as the surface loads (45.9 mV) and the distribution was considered broad (0.62). The result shows that the pH value was increased gradually with the addition of nisin to 4.12, while the turbidity was the highest at 0.39. The content of the insoluble matter and contact angle were the highest for the Chitosan/Silica Nanoparticle (CH-SN) film at 5.68%. The use of nano-materials in chitosan films decreased the material ductility, reduced the tensile strength and elongation-at-break of the membrane. The coated blueberries with Chitosan/Silica Nanoparticle/N films reported the lowest microbial contamination counts at 2.82 log CFU/g followed by Chitosan/Silica Nanoparticle at 3.73 and 3.58 log CFU/g for the aerobic bacteria, molds, and yeasts population, respectively. It was observed that (CH) film extracted 94 regions with an average size of 449.10, at the same time (CH-SN) film extracted 169 regions with an average size of 130.53. The (CH-SN-N) film presented the best result at 5.19%. It could be observed that the size of the total region of the fruit for the (CH) case was the smallest (1663 pixels), which implied that the fruit lost moisture content. As a conclusion, (CH-SN-N) film is recommended for blueberry preservation to prolong the shelf-life during storage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Mohammad Davachi ◽  
Neethu Pottackal ◽  
Hooman Torabi ◽  
Alireza Abbaspourrad

AbstractThere is growing interest among the public and scientific community toward the use of probiotics to potentially restore the composition of the gut microbiome. With the aim of preparing eco-friendly probiotic edible films, we explored the addition of probiotics to the seed mucilage films of quince, flax, and basil. These mucilages are natural and compatible blends of different polysaccharides that have demonstrated medical benefits. All three seed mucilage films exhibited high moisture retention regardless of the presence of probiotics, which is needed to help preserve the moisture/freshness of food. Films from flax and quince mucilage were found to be more thermally stable and mechanically robust with higher elastic moduli and elongation at break than basil mucilage films. These films effectively protected fruits against UV light, maintaining the probiotics viability and inactivation rate during storage. Coated fruits and vegetables retained their freshness longer than uncoated produce, while quince-based probiotic films showed the best mechanical, physical, morphological and bacterial viability. This is the first report of the development, characterization and production of 100% natural mucilage-based probiotic edible coatings with enhanced barrier properties for food preservation applications containing probiotics.


2021 ◽  
pp. 009524432110290
Author(s):  
Mariya L Davydova ◽  
Aytalina F Fedorova

This article represents the results of a study of changes in the properties of vulcanizates based on BNR-18 butadiene-nitrile rubber containing as stabilizers the experimental spatially hindered phenols Stafen, CO3, CO4, and industrial antioxidant 6PPD, after accelerated aging (100°C 96 h) and aging under full-scale exposure in extreme climatic conditions of the Republic of Sakha (Yakutia) during 2 years. In winter, the air temperature reached—48°C, in summer—+36.1°C. It is shown that the experimental sterically hindered phenols more effectively under natural exposure conditions. They are characterized by the most stability in terms of strength throughout the entire exposure period. Under conditions of accelerated aging, the vulcanizate containing the industrial antioxidant 6PPD is characterized by the greatest stability of physical and mechanical properties. According to the viscoelastic characteristics obtained in the dynamic loading mode, the contribution of the presented stabilizers in maintaining resistance to temperature and deformation effects compared with unstabilized rubber is confirmed.


Sign in / Sign up

Export Citation Format

Share Document