scholarly journals Characterization of Blends of Virgin Nitrile Rubber and Compounded Nitrile Rubber Latex Waste Reclaimed with Urea: Part II - Physico-Mechanical Properties

2021 ◽  
Vol 7 (3) ◽  
pp. 733-737
Author(s):  
K.I.D.P. Perera ◽  
D.G. Edirisinghe ◽  
Laleen Karunanayake

Recycling of rubber waste materials in order to convert these to usable products is one of the main challenges in the rubber industry. Reclaiming of rubber waste and blending it with virgin rubber have increased during the past due to the growing concern on the environment and increase in the prices of synthetic rubbers. Hence, the aim of this study is to partially replace virgin nitrile rubber (NBR) with reclaimed compounded NBR latex waste to develop new rubber blends suitable for special applications. In this study, physico-mechanical properties, ageing performance and swelling behaviour of virgin NBR / reclaimed NBR blend vulcanizates were evaluated and compared with those of the control vulcanizate produced solely with virgin NBR. Results showed that replacement of 50% virgin NBR with reclaimed NBR retained 71-86% of tensile strength, elongation at break and resilience. Hardness and modulus of this blend vulcanizate increased by less than 18%, whereas abrasion volume loss and compression set increased by 27%. Ageing resistance is similar to that of the control vulcanizate. Interestingly, resistance to swelling in toluene and ASTM oil No.3 increased by 14% and 32%, respectively. Hence, the 50:50 virgin NBR / reclaimed NBR vulcanizate would be suitable for oil resistant applications.

2016 ◽  
Vol 701 ◽  
pp. 243-249
Author(s):  
Suphatchakorn Limhengha ◽  
Sunpasit Limnararat ◽  
Wipoo Sriseubsai

Natural rubber blending with nitrile rubber is the important raw material employed for the foodstuff conveyor belts formulation. This research involves the replacement of nitrile rubber with epoxidised natural rubber (ENR) aiming for food safety precaution and cost saving on the materials. This work included the investigation on the ratio of ENR with 50% epoxidation (ENR50) and natural rubber (Standard Thai Rubber 5L,STR5L). The ratios of ENR50:STR5L were 100:0, 75:25, 50:50, 25:75 and 0:100. The effect of fillers, i.e. silica (SiO2) and magnesium carbonate (MgCO3) on the properties of rubber blends was also investigated. The vulcanizing system was semi-efficient vulcanization (Semi-EV). The study was further focused on the morphological characterization and mechanical properties. It was found that increasing the proportion of ENR50 and STR5L at 50% produced better mechanical property, however, the elongation at break increased once the ENR50 was down at 25%. Thus, this enhanced the property of the foodstuff conveyor belts compound.


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Maria Daniela Stelescu

The paper presents the technique of production and characterization of polymer composites based on plasticized PVC and rubber powder from vulcanized nitrile rubber waste. The new polymer composites have lower hardness, higher elongation at break, a better tensile strength, and better ozone resistance, and the blend suitable for irrigations pipes for agricultural use was selected. The selected polymer composites have a good behavior under accelerated aging, repeated flexion at room temperature and at low temperature (−20°C), a very good behavior for immersion in water, concentrated acid and basis, animal fat, soya, and sun flower oil, proving their suitability for gaskets, hoses, protection equipment, rubber footwear, and so forth. The resulted thermoplastic polymer composites can be processed by injection, extrusion, and compression molding.


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2017 ◽  
Vol 900 ◽  
pp. 35-39
Author(s):  
Cheng Chien Wang ◽  
Chih Lung Chiu ◽  
Jian Sheng Shen

The different amount of hydrophilic hydroxyl group, including 3, 5, 7 and 10 wt.% copoly (styrene-co - divinyl benzene – co - 2-hydroxylethylenemethacrylate) (poly (St-co-DVB- co -HEMA) s) nanoparticles were synthesized via microemulsion polymerization in the present paper. The average size of the poly (St-co-DVB-co-HEMA) s was ca. 44 nm after zetasizer (DLS) measurement and SEM observation. The characteristic peaks at 3200 ~3600 cm-1 in FTIR was assigned at hydroxyl group of HEMA unit. The NBR/poly (St-co-DVB-co-HEMA) s composites films with 250 μm thickness were prepared simply via latex mixing and followed by spinning coating. The mechanical properties of the poly (St-co-DVB-co-HEMA) s/rubber nanocomposites, including the tensile strength, modulus and elongation, were increased with that of increasing of poly (St-co-DVB-co-HEMA) s adding. In addition, as the poly (St-co-DVB-co-HEMA) s nanoparticles carried out with constant St/HEMA molar ratio of 97:3 and the DVB content in 10 wt.%, the elongation at break that up to more than 3500% and the ultimate stress increased from 0.2 MPa to 0.6 MPa. The poly (St-co-DVB-co-HEMA) s nanoparticles prepared by emulsion polymerization could be successfully enhanced the mechanical properties of rubber latex.


Author(s):  
Stefano Rossi ◽  
Francesca Russo

Porcelain enamel coatings have their origins in ancient times when they were mainly used for decorative and ornamental purposes. From the industrial revolution onwards, these coatings have started to be used also as functional layers, ranging from home applications up to the use in high-technological fields, such as in chemical reactors. The excellent properties of enamel coatings, such as fire resistance, protection of the substrate from corrosion, resistance to atmospheric and chemical degradation, mainly depend and originate from the glassy nature of the enamel matrix itself. On the other side, the vitreous nature of enamel coatings limits their application in many fields, where mechanical stress and heavy abrasion phenomena could lead to nucleation and propagation of cracks inside the material, thus negatively affecting the protective properties of this coating. Many efforts have been made to improve the abrasion resistance of enamelled materials. On this regard, researchers showed encouraging results and proposed many different improvement approaches. Now it is possible to obtain enamels with enhanced resistance to abrasion. Differently, the investigation of the mechanical properties of enamel coatings remains a poorly studied topic. In the literature, there are interesting methodological ideas, which could be successfully applied to the mechanical study of enamelled materials and could allow to have further insights on their behaviour. Thus, the path that should be followed in the future includes the mechanical characterization of these coatings and the search for new solutions to address their brittle behaviour.


2010 ◽  
Vol 123-125 ◽  
pp. 351-354 ◽  
Author(s):  
Fahmida Parvin ◽  
Md. Arifur Rahman ◽  
Jahid M.M. Islam ◽  
Mubarak A. Khan ◽  
A.H.M. Saadat

Polymer films of rice starch/Polyvinyl alcohol (PVA) were prepared by casting method. Different blends were made varying the concentration of rice starch and PVA. Tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. Films made up of rice starch and PVA with a ratio of 2:8 showed highest TS. 10% sugar was added with highest TS giving four composition of Starch/PVA blend in order to increase TS and Eb. Films made up of rice starch and PVA and sugar with a ratio of 1:8:1 showed highest TS and Eb and the recorded value was 14.96MPa and 637% respectively. The physico-mechanical properties of the prepared sugar incorporated films were improved by grafting with acrylic monomer with the aid of UV radiation. A formulation was prepared with monomer, methylmethacrylat in methanol, and a photo initiator. The highest TS of the grafted films were recorded and the value was 16.38 MPa. The water uptake and weight loss in both soil and water of the grafted films are lower than the non-grafted films. The prepared films were further characterized with stereo micrograph and XRD. Finally, the produced film can be used as biodegradable packaging materials for shopping and garbage bags that are very popular and environment friendly.


2011 ◽  
Vol 17 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Gordana Markovic ◽  
Vojislav Jovanovic ◽  
Suzana Samarzija-Jovanovic ◽  
Milena Marinovic-Cincovic ◽  
Jaroslava Budinski-Simendic

In this paper the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM)/isobutylene-co-isoprene (IIR) rubber blends and chlorosulphonated polyethylene (CSM)/chlorinated isobutylene-co-isoprene (CIIR) rubber blends were carried out. Blends were prepared using a two roll-mill at a temperature of 40-50?C. The curing was assessed by using a Monsanto Oscillating Disc Rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160?. The stress-strain experiments were performed using tensile tester machine (Zwick 1425). Results indicate that the scorch time, ts2 and optimum cure time, tc90 increase with increasing CSM content in both blends. The values of modulus at 100% and at 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces.


Sign in / Sign up

Export Citation Format

Share Document