scholarly journals MicroRNA: Important Player in the Pathobiology of Multiple Myeloma

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chonglei Bi ◽  
Wee Joo Chng

Recent studies have revealed a pivotal role played by a class of small, noncoding RNAs, microRNA (miRNA), in multiple myeloma (MM), a plasma cell (PC) malignancy causing significant morbidity and mortality. Deregulated miRNA expression in patient’s PCs and plasma has been associated with tumor progression, molecular subtypes, clinical staging, prognosis, and drug response in MM. A number of important oncogenic and tumor suppressor miRNAs have been discovered to regulate important genes and pathways such as p53 and IL6-JAK-STAT signaling. miRNAs may also form complex regulatory circuitry with genetic and epigenetic machineries, the deregulation of which could lead to malignant transformation and progression. The translational potential of miRNAs in the clinic is being increasingly recognized that they could represent novel biomarkers and therapeutic targets. This review comprehensively summarizes current progress in delineating the roles of miRNAs in MM pathobiology and management.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Noraini Abd-Aziz ◽  
Nur Izyani Kamaruzman ◽  
Chit Laa Poh

MicroRNAs (miRNAs) are small noncoding RNAs that function at the posttranscriptional level in the cellular regulation process. miRNA expression exerts vital effects on cell growth such as cell proliferation and survival. In cancers, miRNAs have been shown to initiate carcinogenesis, where overexpression of oncogenic miRNAs (oncomiRs) or reduced expression of tumor suppressor miRNAs has been reported. In this review, we discuss the involvement of miRNAs in tumorigenesis, the role of synthetic miRNAs as either mimics or antagomirs to overcome cancer growth, miRNA delivery, and approaches to enhance their therapeutic potentials.


2019 ◽  
Author(s):  
Zhi‐yao Zhang ◽  
Yanchen Li ◽  
Chuan‐ying Geng ◽  
Huixing Zhou ◽  
Wen Gao ◽  
...  

2019 ◽  
Vol 24 (39) ◽  
pp. 4639-4645 ◽  
Author(s):  
Seyed Mostafa Parizadeh ◽  
Reza Jafarzadeh-Esfehani ◽  
Amir Avan ◽  
Maryam Ghandehari ◽  
Fatemeh Goldani ◽  
...  

Gastric cancer (GC) has a high mortality rate with a poor 5-year survival. Helicobacter pylori (H. pylori) is present as part of the normal flora of stomach. It is found in the gastric mucosa of more than half of the world population. This bacterium is involved in developing H. pylori-induced GC due to the regulation of different micro ribonucleic acid (miRNA or miR). miRNAs are small noncoding RNAs and are recognized as prognostic biomarkers for GC that may control gene expression. miRNAs may function as tumor suppressors, or oncogenes. In this review, we evaluated studies that investigated the ectopic expression of miRNAs in the prognosis of H. pylori positive and negative GC.


2021 ◽  
Vol 28 ◽  
pp. 107327482098851
Author(s):  
Zeng-Hong Wu ◽  
Yun Tang ◽  
Yan Zhou

Background: Epigenetic changes are tightly linked to tumorigenesis development and malignant transformation’ However, DNA methylation occurs earlier and is constant during tumorigenesis. It plays an important role in controlling gene expression in cancer cells. Methods: In this study, we determining the prognostic value of molecular subtypes based on DNA methylation status in breast cancer samples obtained from The Cancer Genome Atlas database (TCGA). Results: Seven clusters and 204 corresponding promoter genes were identified based on consensus clustering using 166 CpG sites that significantly influenced survival outcomes. The overall survival (OS) analysis showed a significant prognostic difference among the 7 groups (p<0.05). Finally, a prognostic model was used to estimate the results of patients on the testing set based on the classification findings of a training dataset DNA methylation subgroups. Conclusions: The model was found to be important in the identification of novel biomarkers and could be of help to patients with different breast cancer subtypes when predicting prognosis, clinical diagnosis and management.


2021 ◽  
Vol 22 (11) ◽  
pp. 5711
Author(s):  
Julian Zacharjasz ◽  
Anna M. Mleczko ◽  
Paweł Bąkowski ◽  
Tomasz Piontek ◽  
Kamilla Bąkowska-Żywicka

Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


2008 ◽  
Vol 33 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Chunxiang Zhang

Genomic evidence reveals that gene expression in humans is precisely controlled in cellular, tissue-type, temporal, and condition-specific manners. Completely understanding the regulatory mechanisms of gene expression is therefore one of the most important issues in genomic medicine. Surprisingly, recent analyses of the human and animal genomes have demonstrated that the majority of RNA transcripts are relatively small, noncoding RNAs (sncRNAs), rather than large, protein coding message RNAs (mRNAs). Moreover, these sncRNAs may represent a novel important layer of regulation for gene expression. The most important breakthrough in this new area is the discovery of microRNAs (miRNAs). miRNAs comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. As a group, miRNAs may directly regulate ∼30% of the genes in the human genome. In keeping with the nomenclature of RNomics, which is to study sncRNAs on the genomic scale, “microRNomics” is coined here to describe a novel subdiscipline of genomics that studies the identification, expression, biogenesis, structure, regulation of expression, targets, and biological functions of miRNAs on the genomic scale. A growing body of exciting evidence suggests that miRNAs are important regulators of cell differentiation, proliferation/growth, mobility, and apoptosis. These miRNAs therefore play important roles in development and physiology. Consequently, dysregulation of miRNA function may lead to human diseases such as cancer, cardiovascular disease, liver disease, immune dysfunction, and metabolic disorders. microRNomics may be a newly emerging approach for human disease biology.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyong Zhang ◽  
Fengdan Xu ◽  
Zengrong Liu ◽  
Ruiqi Wang ◽  
Tieqiao Wen

As a class of small noncoding RNAs, microRNAs (miRNAs) regulate stability or translation of mRNA transcripts. Some reports bring new insights into possible roles of microRNAs in modulating cell cycle. In this paper, we focus on the mechanism and effectiveness of microRNA-mediated regulation in the cell cycle. We first describe two specific regulatory circuits that incorporate base-pairing microRNAs and show their fine-tuning roles in the modulation of periodic behavior. Furthermore, we analyze the effects ofmiR369-3on the modulation of the cell cycle, confirming thatmiR369-3plays a role in shortening the period of the cell cycle. These results are consistent with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document