scholarly journals Monocyte Proteomics Reveals Involvement of Phosphorylated HSP27 in the Pathogenesis of Osteoporosis

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Bhavna Daswani ◽  
Manoj Kumar Gupta ◽  
Shubhangi Gavali ◽  
Meena Desai ◽  
Gajanan J. Sathe ◽  
...  

Peripheral monocytes, precursors of osteoclasts, have emerged as important candidates for identifying proteins relevant to osteoporosis, a condition characterized by low Bone Mineral Density (BMD) and increased susceptibility for fractures. We employed 4-plex iTRAQ (isobaric tags for relative and absolute quantification) coupled with LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) to identify differentially expressed monocyte proteins from premenopausal and postmenopausal women with low versus high BMD. Of 1801 proteins identified, 45 were differentially abundant in low versus high BMD, with heat shock protein 27 (HSP27) distinctly upregulated in low BMD condition in both premenopausal and postmenopausal categories. Validation in individual samples (n=80) using intracellular ELISA confirmed that total HSP27 (tHSP27) as well as phosphorylated HSP27 (pHSP27) was elevated in low BMD condition in both categories (P<0.05). Further, using transwell assays, pHSP27, when placed in the upper chamber, could increase monocyte migration (P<0.0001) and this was additive in combination with RANKL (receptor activator ofNFkBligand) placed in the lower chamber (P=0.05). Effect of pHSP27 in monocyte migration towards bone milieu can result in increased osteoclast formation and thus contribute to pathogenesis of osteoporosis. Overall, this study reveals for the first time a novel link between monocyte HSP27 and BMD.

2021 ◽  
Vol 6(167) ◽  
pp. 85-114
Author(s):  
Edward Opaliński

In 1572–1668 the Sejm of the Commonwealth of Two Nations underwent constant evolution. The greatest changes occurred at the time of the first interregnum (1572–74) after the death of the last Jagiellonian monarch – Zygmunt Augustus (1572). This was the time of the emergence of two types of new Sejms (convocation and election ones), functioning exclusively during the interregnum. The Henrician Articles (1574) resolved that the Sejm was to debate only for six weeks, and that the monarch was compelled to convoke it at least once every two years. The extraordinary Sejm was established in 1613 – it could be convened in cases of urgent needs and it sat for two or three weeks. The Parliament was composed of three estates: the king, the Senate, and the deputies as well as two chambers. The upper chamber (Senate) consisted of senators nominated by the monarch on a lifelong basis, and the lower chamber (Chamber of Deputies) – of deputies of the noble estate elected at pre-Sejm sejmiks (Polish: sejmiki). An integral part of the Parliament was composed of the Sejm court, both appellant and trying gravest crimes. The Crown and Lithuanian Tribunal, established in 1578–81, assumed appellation competences from the Sejm court. Tribunal judges were elected every year for a year-long term of office at special sejmiks known as deputational or deputy (judicial), which constituted a forum; here deputies presented to the voters accounts of their parliamentary activity. At the turn of 1591, post-Sejm or relational (debriefing) sejmiks were convened after the closure of the Sejm debates; here deputies presented reports concerning their parliamentary activities. The growing composition of the Parliament was associated with an expansion of state territory as a result of victorious wars waged against Muscovy. New bishoprics, voivodeships, and sejmiki were established. There were 140 senators in 1572, and 150 during the 1630s. Analogously, the number of deputies grew from 166 to 180. The Sejm acted upon the basis of a consensus, and thus was obligated to take into account the stand of the minorities. In 1652, the protest of a single deputy for the first time rendered further Sejm debates impossible. From then on, the Polish-Lithuanian Parliament constantly succumbed to a degradation process.


2021 ◽  
Vol 22 (5) ◽  
pp. 2303
Author(s):  
Liang Li ◽  
Ming Yang ◽  
Saroj Kumar Shrestha ◽  
Hyoungsu Kim ◽  
William H. Gerwick ◽  
...  

Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.


2021 ◽  
Author(s):  
Sara Ramírez-Acosta ◽  
Marta Selma-Royo ◽  
M Carmen Collado ◽  
Francisco Navarro ◽  
Nieves Abril ◽  
...  

Abstract Selenium is a well-known essential element with important roles in human reproductive health mainly due to its antioxidant character. This study aimed to investigate the potential role of selenoproteins on the gut microbiota-reproductive health. A new assay for the absolute quantification of selenoproteins in testicular tissue based on two dimensional chromatography with inductively coupled plasma mass spectrometry was performed for the first time. Gut microbiota profile was obtained by 16S rRNA gene sequencing. Numerous associations were found between testicular selenoproteins and gut microbiota (e.g. Mucispirillum, related with sperm activity and testosterone, was associated to glutathione peroxidase (GPx) and selenoalbumin (SeAlb), while Escherichia/Shigella, related to sex hormones, correlated with GPx, selenoprotein P (SelP) and SeAlb). The effects of Se-supplementation on testicular selenoproteins only occurs in conventional mice, suggesting a potential selenoproteins-microbiota interplay that underlies in testicular function. The selenoproteins GPx and SelP have been quantified for the first time in testicles, including the novel identification of SeAlb, a protein with nonspecifically incorporated Se. These findings demonstrates the significant impact of Se-supplementation on gut microbiota and reproductive health. In addition, the analytical methodology applied for selenoproteins quantification in testicular tissue opens new possibilities to evaluate their role on the gut microbiota-reproductive health axis.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Oluwaseun Adeola ◽  
Yan Ji ◽  
Phillip Fish ◽  
Tammy Strawn ◽  
Gary A Weisman ◽  
...  

Background: Purinergic receptor activation by extracellular nucleotides is involved in thrombosis and neointimal hyperplasia that accompany atherosclerosis and postangioplasty restenosis. Human apyrases [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases)] are membrane bound enzymes that hydrolyze extracellular nucleotides, thereby inhibiting purinergic receptor activation. CD39, the first identified human apyrase, is constitutively expressed on endothelial cell (EC) and vascular smooth muscle cell (VSMC) surfaces. APT102, a recombinant soluble form of CD39L3, has been shown to reduce platelet activation through its ADPase activity, but its effects on VSMC and EC function are yet to be established. We tested the hypothesis that APT102 will inhibit migration of VSMCs and ECs. Methods: We studied cell migration using a modified Boyden chamber assay in which 5x10 4 cells suspended in 0.2% FBS/DMEMF12 were added to the upper chamber of transwells separated from the lower chamber medium by a microporous membrane through which VSMCs and ECs can migrate. APT102 (100 nM) or vehicle control was added to the upper chamber; lower chamber contained 2.5% FBS/DMEMF12 and either ATP (10 μM) or vehicle control. Transwells were incubated at 37 0 C for 6 h, after which cells that migrated through pores and adhered to the lower chamber side of the membrane were fixed, stained and counted. Results: ATP (10μM) significantly enhanced migration of both VSMCs and ECs. APT102 significantly inhibited VSMC migration and completely abrogated the pro-migratory effect of ATP. In contrast, APT102 had no inhibitory effect on EC migration, either spontaneous or ATP-enhanced. Conclusion: APT102 inhibits VSMC but not EC migration. These results suggest that pharmacological targeting of extracellular nucleotides may provide a safe and effective therapeutic strategy to inhibit neointimal hyperplasia and restenosis after angioplasty, without delaying endothelial cell recovery, which is a significant limitation of drug-eluting stents. Further studies are needed to clarify the mechanism(s) underlying the differential effect of extracellular nucleotide degradation by APT102 on VSMC and EC migration.


2021 ◽  
pp. 002203452110453
Author(s):  
G. Yuan ◽  
C. Fu ◽  
S.T. Yang ◽  
D.Y. Yuh ◽  
G. Hajishengallis ◽  
...  

Periodontitis is a complex inflammatory disease affecting the supporting structures of teeth and is associated with systemic inflammatory disorders. Regulator of G-protein signaling 12 (RGS12), the largest protein in the RGS protein family, plays a crucial role in the development of inflammation and bone remodeling. However, the role and mechanism(s) by which RGS12 may regulate periodontitis have not been elucidated. Here, we showed that ablation of RGS12 in Mx1+ hematopoietic cells blocked bone loss in the ligature-induced periodontitis model, as evidenced morphometrically and by micro–computed tomography analysis of the alveolar bone. Moreover, hematopoietic cell-specific deletion of RGS12 inhibited osteoclast formation and activity as well as the production of inflammatory cytokines such as IL1β, IL6, and TNFα in the diseased periodontal tissue. In the in vitro experiments, we found that the overexpression of RGS12 promoted the reprogramming of macrophages to the proinflammatory M1 type, but not the anti-inflammatory M2 type, and enhanced the ability of macrophages for migration. Conversely, knockdown of RGS12 in macrophages inhibited the production of inflammatory cytokines and migration of macrophages in response to lipopolysaccharide stimulation. Our results demonstrate for the first time that inhibition of RGS12 in macrophages is a promising therapeutic target for the treatment of periodontitis.


2019 ◽  
Vol 20 (16) ◽  
pp. 4038 ◽  
Author(s):  
Yeojin Kim ◽  
Jinman Kim ◽  
Hyerim Lee ◽  
Woo-Ri Shin ◽  
Sheunghun Lee ◽  
...  

Osteoporosis is a common disorder of bone remodeling, caused by the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Recently, we reported that matrix metalloproteinase-9 (MMP-9)-dependent histone H3 proteolysis is a key event for proficient osteoclast formation. Although it has been reported that several MMP-9 inhibitors, such as tetracycline and its derivatives, show an inhibitory effect on osteoclastogenesis, the molecular mechanisms for this are not fully understood. Here we show that tetracycline analogs, especially tigecycline and minocycline, inhibit osteoclast formation by blocking MMP-9-mediated histone H3 tail cleavage. Our molecular docking approach found that tigecycline and minocycline are the most potent inhibitors of MMP-9. We also observed that both inhibitors significantly inhibited H3 tail cleavage by MMP-9 in vitro. These compounds inhibited receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast formation by blocking the NFATc1 signaling pathway. Furthermore, MMP-9-mediated H3 tail cleavage during osteoclast differentiation was selectively blocked by these compounds. Treatment with both tigecycline and minocycline rescued the osteoporotic phenotype induced by prednisolone in a zebrafish osteoporosis model. Our findings demonstrate that the tetracycline analogs suppress osteoclastogenesis via MMP-9-mediated H3 tail cleavage, and suggest that MMP-9 inhibition could offer a new strategy for the treatment of glucocorticoid-induced osteoporosis.


2019 ◽  
Vol 20 (15) ◽  
pp. 3770
Author(s):  
Fang ◽  
Yao ◽  
Zhang ◽  
Tian ◽  
Wang ◽  
...  

Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. Methyl jasmonate (MeJA), a plant hormone, mediates diverse developmental process and defense responses which induce a variety of metabolites. In plants, little is known about autophagy-mediated responses against MeJA. In this study, we used high-throughput comparative proteomics to identify proteins of latex in the laticifers. The isobaric tags for relative and absolute quantification (iTRAQ) MS/MS proteomics were performed, and 298 proteins among MeJA treated groups and the control group of Euphorbia kansui were identified. It is interesting to note that 29 significant differentially expressed proteins were identified and their associations with autophagy and ROS pathway were verified for several selected proteins as follows: α-L-fucosidase, β-galactosidase, cysteine proteinase, and Cu/Zn superoxide dismutase. Quantitative real-time PCR analysis of the selected genes confirmed the fact that MeJA might enhance the expression of some genes related to autophagy. The western blotting and immunofluorescence results of ATG8 and ATG18a which are two important proteins for the formation of autophagosomes also demonstrated that MeJA could promote autophagy at the protein level. Using the electron microscope, we observed an increase in autophagosomes after MeJA treatment. These results indicated that MeJA might promote autophagy in E. kansui laticifers; and it was speculated that MeJA mediated autophagy through two possible ways: the increase of ROS induces ATG8 accumulation and then aotophagosome formation, and MeJA promotes ATG18 accumulation and then autophagosome formation. Taken together, our results provide several novel insights for understanding the mechanism between autophagy and MeJA treatment. However, the specific mechanism remains to be further studied in the future.


2019 ◽  
Vol 3 (4) ◽  
pp. 541-551 ◽  
Author(s):  
Muhammad Baghdadi ◽  
Kozo Ishikawa ◽  
Sayaka Nakanishi ◽  
Tomoki Murata ◽  
Yui Umeyama ◽  
...  

AbstractMultiple myeloma (MM) is a hematological malignancy that grows in multiple sites of the axial skeleton and causes debilitating osteolytic disease. Interleukin-34 (IL-34) is a newly discovered cytokine that acts as a ligand of colony-stimulating factor-1 (CSF-1) receptor and can replace CSF-1 for osteoclast differentiation. In this study, we identify IL-34 as an osteoclastogenic cytokine that accelerates osteolytic disease in MM. IL-34 was found to be expressed in the murine MM cell line MOPC315.BM, and the expression of IL-34 was enhanced by stimulation with proinflammatory cytokines or by bone marrow (BM) stromal cells. MM-cell–derived IL-34 promoted osteoclast formation from mouse BM cells in vitro. Targeting Il34 by specific small interfering RNA impaired osteoclast formation in vitro and attenuated osteolytic disease in vivo. In BM aspirates from MM patients, the expression levels of IL-34 in CD138+ populations vary among patients from high to weak to absent. MM cell–derived IL-34 promoted osteoclast formation from human CD14+ monocytes, which was reduced by a neutralizing antibody against IL-34. Taken together, this study describes for the first time the expression of IL-34 in MM cells, indicating that it may enhance osteolysis and suggesting IL-34 as a potential therapeutic target to control pathological osteoclastogenesis in MM patients.


Sign in / Sign up

Export Citation Format

Share Document