scholarly journals Antimicrobial Activities of a Plethora of Medicinal Plant Extracts and Hydrolates against Human Pathogens and Their Potential to Reverse Antibiotic Resistance

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Dieudonné Lemuh Njimoh ◽  
Jules Clement N. Assob ◽  
Seraphine Ebenye Mokake ◽  
Dinga Jerome Nyhalah ◽  
Claude Kwe Yinda ◽  
...  

Microbial infections till date remain a scourge of humanity due to lack of vaccine against some infections, emergence of drug resistant phenotypes, and the resurgence of infections amongst others. Continuous quest for novel therapeutic approaches remains imperative. Here we (i) assessed the effects of extracts/hydrolates of some medicinal plants on pathogenic microorganisms and (ii) evaluated the inhibitory potential of the most active ones in combination with antibiotics. Extract E03 had the highest DZI (25 mm). Extracts E05 and E06 were active against all microorganisms tested. The MICs and MBCs of the methanol extracts ranged from 16.667 × 103 μg/mL to 2 μg/mL and hydrolates from 0.028 to 333333 ppm. Extract E30 had the highest activity especially againstS. saprophyticus(MIC of 6 ppm) andE. coli(MIC of 17 ppm). Combination with conventional antibiotics was shown to overcome resistance especially with E30. Analyses of the extracts revealed the presence of alkaloids, flavonoids, triterpenes, steroids, phenols, and saponins. These results justify the use of these plants in traditional medicine and the practice of supplementing decoctions/concoctions with conventional antibiotics.Nauclea pobeguinii (E30), the most active and synergistic of all these extracts, and some hydrolates with antimicrobial activity need further exploration for the development of novel antimicrobials.

Author(s):  
VIGI CHAUDHARY ◽  
RAGHUVANSHI RK ◽  
NAVEEN CHAUDHARY ◽  
GAURAV SHARMA

Objective: The present study was conducted to evaluate the potential of some medicinal plants used in Ayurveda in treating multiple drug-resistant human pathogens causing urinary tract infections (UTIs). Methods: Dried parts of six medicinal plants used in Ayurveda for treating UTI were Soxhlet extracted, and the extract was concentrated in vacuo. Various concentrations of the extract were tested for antimicrobial activity against three clinical isolates of multiple drug-resistant bacteria causing UTI. Results: Preliminary results showed the promising antibacterial effect of plant extracts. Escherichia coli, the most common pathogen associated with UTI, was susceptible to aqueous extracts of all the six medicinal plants. Conclusion: This study concluded that the medicinal plants used in Ayurveda to treat UTIs are effective against multiple drug-resistant uropathogens. Further study in this regard may lead to the identification of novel antimicrobial agent for treating multiple drug-resistant urinary tract pathogens.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Natalja Jerjomiceva ◽  
Hisham Seri ◽  
Ragheda Yaseen ◽  
Nicole de Buhr ◽  
William N. Setzer ◽  
...  

Guarea kunthiana is used in folk remedies for the treatment of several diseases including microbial infections. The mechanism behind this phenomenon still needs to be elucidated. Here, we investigated the effect of G. kunthiana bark extract on antimicrobial functions of human and bovine neutrophils as the first line of defense against infections. For this aim, neutrophils were isolated from either human or bovine blood and treated with G. kunthiana bark extract. The antimicrobial activity of the neutrophils against Staphylococcus (S.) aureus and Escherichia (E.) coli was tested in a bacterial survival assay and a fluorescence-based phagocytosis assay. Furthermore, the formation of neutrophil extracellular traps (NETs) was visualized by immunofluorescence microscopy. We show that neutrophils treated with G. kunthiana extract distinctly increased phagocytosis of S. aureus or E. coli. Interestingly, we demonstrate that G. kunthiana bark extract induces the formation of NETs in both cell types. This effect was abolished when treating the cells with diphenyleniodonium chloride (DPI) pointing to a direct implication of the NADPH oxidase-dependent formation of reactive oxygen species in this process. In summary, our data strongly suggest that G. kunthiana bark extract boosts the antimicrobial activities of neutrophils as the first line of defense against invading pathogens.


2017 ◽  
Vol 24 (07) ◽  
pp. 1750095
Author(s):  
ALPANA THAKUR ◽  
SUNIL KUMAR ◽  
POOJA PATHANIA ◽  
DINESH PATHAK ◽  
V. S. RANGRA

Materials composed of single or a few pure/modified graphitic layers can be easily synthesized using chemical methods. In the present work, nanocomposites of reduced graphene oxide (RGO) with zinc oxide (ZnO) have been prepared via in situ reduction of graphite oxide (GO). X-ray diffraction spectra (XRD) confirmed the coexistence of RGO and ZnO crystal planes. The XRD results were complimented by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. Incorporation of ZnO phase into the graphitic layers has been identified with the help of scanning electron microscopy (SEM). Incorporation of ZnO into graphitic layers has enhanced the thermal and optical characteristics of RGO but turned out with the reduced electrical conductivity. These nanocomposites illustrated fascinating antimicrobial activities against human pathogens E. coli and S. aureus.


2011 ◽  
Vol 66 (7-8) ◽  
pp. 340-344 ◽  
Author(s):  
Hanif Shirinzadeh ◽  
Nurten Altanlar ◽  
Nihal Yucel ◽  
Seckin Ozden ◽  
Sibel Suzen

There has been an increasing importance of drug-resistant pathogens in clinical microbiological and antibacterial research. Indoles and hydrazone-type compounds constitute important classes of compounds in the search for effective agents against multidrug-resistant microbial infections. In this study a series of 1-methylindole-3-carboxaldehyde hydrazone derivatives were evaluated for their in vitro antimicrobial activities using the two-fold serial dilution technique against Staphylococcus aureus, methicillin-resistant S. aureus, methicillinresistant S. aureus isolate, Escherichia coli, Bacillus subtilis, and Candida albicans. The minimum inhibitory concentration (MIC) of the test compounds and the reference standards sultamicillin, ampicillin, fluconazole, and ciprofloxacin was determined. All compounds possessed a broad spectrum of activity having MIC values of 6.25 - 100 μg/ml against the tested microorganisms. Aromaticity and disubstitution of the phenyl ring with especially fluorine and chlorine atoms were found to be significant for the antimicrobial activity


Author(s):  
Z. K. Egbunu ◽  
O. O. Owoyemi ◽  
M. K. Oladunmoye ◽  
O. J. Abraham ◽  
O. I. Afolami

Aims: This research was designed to evaluate the phytochemicals present in the leaf extracts of Chromolaena odorata L. and their antimicrobial activities. Methodology: Dried leaves of C. odorata were pulverized and subjected to ethanolic and aqueous extraction. The extracts were qualitatively and quantitatively screened for phytochemicals using standard methods. The inhibitory activity of the leaf extracts were evaluated against clinical pathogens; Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Proteus mirabilis and Candida albicans using agar well diffusion technique at 100 mg/mL and 200 mg/mL concentrations. Results: The ethanolic extract of C. odorata had a better percentage yield of 5.49 g, followed by aqueous extract (3.5 g). The phytochemical screening conducted on the extracts revealed the presence of flavonoid, alkaloid, saponin, cardiac glycoside, steroids, tannins and terpenoids. The ethanolic extract exhibited better antimicrobial activity on S. typhi, S. aureus, E. coli, Ps. aeruginosa and C. albicans compared to the aqueous extract. This could be as a result of the higher extraction capability of the ethanol to penetrate easily into the cellular membrane and dissolve the intracellular inclusions from the plant materials than the aqueous solvent. The zones of inhibition of ethanolic extract at 100 mg/mL ranges from 2.33±0.33 mm to 9.50±0.36 mm with the lowest efficacy observed on P. mirabilis and highest on S. aureus. S. typhi was susceptible to the aqueous extract of the plant at this concentration with inhibitory zone of 4.00±0.00 mm. The ethanolic extract of the plant was also effective against C. albicans with inhibitory zone of 4.17±0.17 mm at 100 mg/mL. Chloramphenicol inhibited all the test bacteria with the highest efficacy on E. coli (16.33±0.03 mm) and ketoconazole at 25 mg/mL had a better antifungal activity on C. albicans compared to the observed antifungal activities of the aqueous and ethanolic extracts of C. odorata at 100 mg/mL. Furthermore, the test organisms were more susceptible to the aqueous and ethanolic extracts of C. odorata at 200 mg/mL with zones of inhibition ranging from 3.23±0.15 mm to 12.33±0.33 mm. The lowest being observed on E.coli and highest on S. typhi (ethanolic extract). K. Pneumoniae and P. mirabilis were resistant to the aqueous extract of C. odorata. All the test bacteria were susceptible to the aqueous and ethanolic extracts of C. odorata at 200 mg/mL extracts concentration. Moreover, C. albicans was susceptible to the inhibitory effect of C. odorata at this concentration with inhibitory zones of 3.00±0.00 mm and 5.33±0.33 mm on aqueous and ethanolic extracts respectively. Conclusion: The findings from this study revealed the antimicrobial activities of C. odorata on the test pathogens which are in close proximity in comparison with the synthetic antimicrobial agents and thus upon purification, can be harnessed as a lead for the development of natural products derived antimicrobials in drug discovery against infections caused by these human pathogens evaluated in this study.


Author(s):  
S. Rajeswari ◽  
E. Poongothai ◽  
N. Hemalatha

Objective: For control of microbial infections and diseases, various synthetic drugs and chemical formulations are currently in use. But due to the problem of microbial drug resistance, new alternative synthetic drugs have been explored. Similarly, antimicrobial activities of so many natural products have also been explored.Methods: In this various study extracts of cow dung possessed antimicrobial property against human pathogens like Klebsiella pneumonia and Escherichia coli.Results: The Indian cow dung extracted possessed superior antimicrobial activity than other cow dung types and showed antimicrobial property against all the test microorganisms. Since cow dung and buffalo dung are abundant in nature, which make the process cost effective with processing ease and thus are a promising solution for a variety of health problems in the near future.Conclusion: The medicinal properties of these cow dung and buffalo dung can be exploited to formulate drugs for several diseases caused by antibiotic resistant pathogenic microorganisms.


2020 ◽  
Vol 20 (1) ◽  
pp. 69-75
Author(s):  
Santi M. Mandal ◽  
Subhanil Chakraborty ◽  
Santanu Sahoo ◽  
Smritikona Pyne ◽  
Samaresh Ghosh ◽  
...  

Background: The need for suitable antibacterial agents effective against Multi-drug resistant Gram-negative bacteria is acknowledged globally. The present study was designed to evaluate the possible antibacterial potential of an extracted compound from edible flowers of Moringa oleifera. Methods: Five different solvents were used for preparing dried flower extracts. The most effective extract was subjected to fractionation and further isolation of the active compound with the highest antibacterial effect was obtained using TLC, Column Chromatography and reverse phase- HPLC. Approaches were made for characterization of the isolated compound using FTIR, NMR and Mass spectrometry. Antibacterial activity was evaluated according to the CLSI guidelines. Results: One fraction of aqueous acetic acid extract of M. oleifera flower was found highly effective and more potent than conventional antibiotics of different classes against Multi-drug resistant Gram-negative bacilli (MDR-GNB) when compared. The phytochemical analysis of the isolated compound revealed the presence of hydrogen-bonded amine and hydroxyl groups attributable to unsaturated amides. Conclusion: The present study provided data indicating a potential for use of the flowers extract of M. oleifera in the fight against infections caused by lethal MDR-GNB. Recommendations: Aqueous acetic acid flower extract of M. oleifera is effective, in-vitro, against Gram-negative bacilli. This finding may open a scope in pharmaceutics for the development of new classes of antibiotics.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S823-S823
Author(s):  
Kendra Foster ◽  
Linnea A Polgreen ◽  
Brett Faine ◽  
Philip M Polgreen

Abstract Background Urinary tract infections (UTIs) are one of the most common bacterial infections. There is a lack of large epidemiologic studies evaluating the etiologies of UTIs in the United States. This study aimed to determine the prevalence of different UTI-causing organisms and their antimicrobial susceptibility profiles among patients being treated in a hospital setting. Methods We used the Premier Healthcare Database. Patients with a primary diagnosis code of cystitis, pyelonephritis, or urinary tract infection and had a urine culture from 2009- 2018 were included in the study. Both inpatients and patients who were only treated in the emergency department (ED) were included. We calculated descriptive statistics for uropathogens and their susceptibilities. Multi-drug-resistant pathogens are defined as pathogens resistant to 3 or more antibiotics. Resistance patterns are also described for specific drug classes, like resistance to fluoroquinolones. We also evaluated antibiotic use in this patient population and how antibiotic use varied during the hospitalization. Results There were 640,285 individuals who met the inclusion criteria. Females make up 82% of the study population and 45% were age 65 or older. The most common uropathogen was Escherichia Coli (64.9%) followed by Klebsiella pneumoniae (8.3%), and Proteus mirabilis (5.7%). 22.2% of patients were infected with a multi-drug-resistant pathogen. We found that E. Coli was multi-drug resistant 23.8% of the time; Klebsiella pneumoniae was multi-drug resistant 7.4%; and Proteus mirabilis was multi-drug resistant 2.8%. The most common antibiotics prescribed were ceftriaxone, levofloxacin, and ciprofloxacin. Among patients that were prescribed ceftriaxone, 31.7% of them switched to a different antibiotic during their hospitalization. Patients that were prescribed levofloxacin and ciprofloxacin switched to a different antibiotic 42.8% and 41.5% of the time, respectively. Conclusion E. Coli showed significant multidrug resistance in this population of UTI patients that were hospitalized or treated within the ED, and antibiotic switching is common. Disclosures All Authors: No reported disclosures


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


Sign in / Sign up

Export Citation Format

Share Document