scholarly journals Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Cartigueyen Srinivasan ◽  
Mahadevan Karunanithi

Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nanocomposites reinforced with nanosized silicon carbide particles (SiCp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nanosized SiCp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nanocomposites was remarkably enhanced and about 95% more than that of copper matrix.

Author(s):  
Sudhir Kumar ◽  
Kapil Kumar ◽  
Manish Maurya ◽  
Vishal

Abstract Friction stir processing was used to prepare aluminium metal matrix composite reinforced with B4C particles. The micro-hardness of the composite was improved by selecting the process parameters. Friction stir processing parameters, namely tool rotational speed, tool tilt angle and different pin profiles, were explored by using Taguchi’s L9 orthogonal array and analysis of variance. Optical microscopy and scanning electron microscopy were employed for microstructural analysis. X-ray diffraction was used to evaluate the residual stress. Experimental results illustrated that increased rotational speed, reduced tilt angle and square pin profile of the tool gave more uniform dispersal of B4C content with maximum micro-hardness. Small amounts of compressive residual stress developed at the stirred and thermo-mechanically affected zones confirmed the adequate improvement in micro-hardness. Micro-hardness of fabricated Al 6063/B4C composite surfaces was enhanced by 30% as compared to Al 6063 alloy.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


2011 ◽  
Vol 391-392 ◽  
pp. 524-529 ◽  
Author(s):  
Wen Liang Chen ◽  
Chun Ping Huang ◽  
Li Ming Ke

Carbon nanotubes(CNTs) reinforced copper matrix composites were successfully produced by Friction Stir Processing (FSP). The effect of applying multiple FSP passes on the forming of composites was studied, the microstructure, microhardness and conductivity of the good forming composite were analyzed. The experimental results showed that CNTs uniformly distributed and good forming composite can be obtained by three FSP passes. Compared to the parent material, the grain size of the composite has significantly refined, and the microhardness of the composite has also greatly improved, but the conductivity of the composite has a small decrease.


Author(s):  
Sharaf U Nisa ◽  
Sunil Pandey ◽  
PM Pandey

Closed-cell porous aluminum is expected to be a prominent material in near future because of its light weight, high specific modulus of elasticity, high energy absorption efficiency and high sound-insulating capacity in the automotive and aerospace industries. Recently, a new method of foaming has been developed in which a precursor is formed using friction stir processing. In the friction stir processing route, a precursor is fabricated by embedding a mixture of blowing agent powder and stabilization agent powder into aluminum alloy plates by the significant stirring action of friction stir processing. By applying the friction stir processing route precursor method, the cost-effective Al-foam formation along with high productivity can be accomplished. In this study, titanium hydride powder has been used as the blowing agent as it is reported to be most compatible with aluminum matrix. The effect of percentage of stabilization agent, i.e. alumina powder on porosity of aluminum foams formed using friction stir processing route is analyzed. The porous aluminum formed with three different percentages of alumina is observed and their porosity is calculated. Also, the compressive performance of the obtained samples is observed in order to examine the alumina powder addition on mechanical properties of the obtained metal foam. This study aims at analyzing the significance of addition of the alumina into the blowing agent while developing the metal foam through friction stir processing route.


2017 ◽  
pp. 1293-1305
Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


2019 ◽  
Vol 116 (6) ◽  
pp. 631 ◽  
Author(s):  
R. Ashok kumar ◽  
G.R. Raghav ◽  
K.J. Nagarajan ◽  
Sathish Rengarajan ◽  
P. Suganthi ◽  
...  

The main objective of this work is to modify the mechanical as well as surface properties of weld nugget by the reinforcement of hybrid ceramic particles (alumina and silicon carbide). This is accomplished by combining friction stir welding (FSW) and friction stir processing (FSP) on dissimilar AA6101-T6 and AA1350 aluminium alloys. For this purpose, various levels of mixing proportions of Al2O3 & SiC particles are used with constant groove depth and width i.e. constant groove dimension. To evaluate the quality of joints, tensile, bending, micro-hardness, wear and microstructural studies are carried out. Among these, reinforcement of 100% alumina particles exhibits better mechanical and wear properties. On the other hand, reinforcement of 100% silicon carbide particles produces poor mechanical and wear properties. And also increment in percentage of reinforcement of alumina particles improves the mechanical and wear properties of weld nugget, when compared to increment in percentage of reinforcement of silicon carbide particles.


2019 ◽  
Vol 54 (8) ◽  
pp. 1107-1117 ◽  
Author(s):  
Farhad Ostovan ◽  
Sattar Amanollah ◽  
Meysam Toozandehjani ◽  
Ehsan Shafiei

In the present study, friction stir processing was adopted for surface treatment of Al5083 by incorporation of CNT and Al2O3 nanoparticles. Microstructural, mechanical and tribological properties of the surface of Al5083/CNT, Al5083/Al2O3 and hybrid Al5083/CNT/Al2O3 nanocomposite were investigated and compared. The friction stir processing yielded a nearly uniform dispersion of CNTs and Al2O3 nanoparticles, irrespective of nanoparticle reinforcements and their weight fraction. Microstructural observations revealed that Al2O3 nanoparticles have dispersed in different zones including intra-grain and grain boundary zones while, CNTs are pinned into grain boundaries during friction stir processing. From mechanical point of view, hybridization of CNT/Al2O3 enhances the hardness (126 HV at stirred zone), strength (UTS of ∼487 MPa) and also wear resistance of Al5083/CNT/Al2O3 nanocomposites. The enhancement is attributed to the presence and combination of features of both CNT and Al2O3 nanoparticles which are different in nature; one spherical oxide and one nanotube.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1002
Author(s):  
Chunping Huang ◽  
Yang Xia ◽  
Chun Xia ◽  
Fencheng Liu

A double reinforced layer on an aluminum alloy surface was produced using friction stir processing (FSP) by adding 34CrNiMo6 powder into Al (AA2024) substrate for better wear resistance and gradient transitions. The microstructures of the composites were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The phase composition was examined by X-ray diffraction (XRD). The results show that the double reinforced layer of the Al13Fe4 intermetallic compound could be successfully fabricated via FSP. The volume fraction of Al13Fe4 in the double reinforced layer was higher than in the single reinforced layer due to adding 34CrNiMo6 powder and reinforced twice, and the Al13Fe4 particles were dispersed more homogeneously in the double reinforced layer. The interfaces between the double and single reinforced layer had a good metallurgical bond. The microhardness of the double reinforcement layer was significantly increased. Compared with the AA2024 substrate, the microhardness of the double and single reinforced layers increased five- (576 HV) and two-fold (254 HV), respectively.


Sign in / Sign up

Export Citation Format

Share Document