scholarly journals A Glyoxalase-1 Knockdown Does Not Have Major Short Term Effects on Energy Expenditure and Atherosclerosis in Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Markus Wortmann ◽  
Maani Hakimi ◽  
Thomas Fleming ◽  
Andreas S. Peters ◽  
Tjeerd P. Sijmonsma ◽  
...  

Objective. Glyoxalase-1 is an enzyme detoxifying methylglyoxal (MG). MG is a potent precursor of advanced glycation endproducts which are regarded to be a key player in micro- and macrovascular damage. Yet, the role of Glo1 in atherosclerosis remains unclear. In this study, the effect of Glo1 on mouse metabolism and atherosclerosis is evaluated.Methods. Glo1 knockdown mice were fed a high fat or a standard diet for 10 weeks. Body weight and composition were investigated by Echo MRI. The PhenoMaster system was used to measure the energy expenditure. To evaluate the impact of Glo1 on atherosclerosis, Glo1KDmice were crossed with ApoE-knockout mice and fed a high fat diet for 14 weeks.Results. Glo1 activity was significantly reduced in heart, liver, and kidney lysates derived from Glo1KDmice. Yet, there was no increase in methylglyoxal-derived AGEs in all organs analyzed. The Glo1 knockdown did not affect body weight or body composition. Metabolic studies via indirect calorimetry did not show significant effects on energy expenditure. Glo1KDmice crossed to ApoE−/−mice did not show enhanced formation of atherosclerosis.Conclusion. A Glo1 knockdown does not have major short term effects on the energy expenditure or the formation of atherosclerotic plaques.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Miroslava Kacířová ◽  
Blanka Železná ◽  
Michaela Blažková ◽  
Martina Holubová ◽  
Andrea Popelová ◽  
...  

Abstract Background Obesity leads to low-grade inflammation in the adipose tissue and liver and neuroinflammation in the brain. Obesity-induced insulin resistance (IR) and neuroinflammation seem to intensify neurodegeneration including Alzheimer’s disease. In this study, the impact of high-fat (HF) diet-induced obesity on potential neuroinflammation and peripheral IR was tested separately in males and females of THY-Tau22 mice, a model of tau pathology expressing mutated human tau protein. Methods Three-, 7-, and 11-month-old THY-Tau22 and wild-type males and females were tested for mobility, anxiety-like behavior, and short-term spatial memory in open-field and Y-maze tests. Plasma insulin, free fatty acid, cholesterol, and leptin were evaluated with commercial assays. Liver was stained with hematoxylin and eosin for histology. Brain sections were 3′,3′-diaminobenzidine (DAB) and/or fluorescently detected for ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and tau phosphorylated at T231 (pTau (T231)), and analyzed. Insulin signaling cascade, pTau, extracellular signal-regulated kinase 1/2 (ERK1/2), and protein phosphatase 2A (PP2A) were quantified by western blotting of hippocampi of 11-month-old mice. Data are mean ± SEM and were subjected to Mann-Whitney t test within age and sex and mixed-effects analysis and Bonferroni’s post hoc test for age comparison. Results Increased age most potently decreased mobility and increased anxiety in all mice. THY-Tau22 males showed impaired short-term spatial memory. HF diet increased body, fat, and liver weights and peripheral IR. HF diet-fed THY-Tau22 males showed massive Iba1+ microgliosis and GFAP+ astrocytosis in the hippocampus and amygdala. Activated astrocytes colocalized with pTau (T231) in THY-Tau22, although no significant difference in hippocampal tau phosphorylation was observed between 11-month-old HF and standard diet-fed THY-Tau22 mice. Eleven-month-old THY-Tau22 females, but not males, on both diets showed decreased synaptic and postsynaptic plasticity. Conclusions Significant sex differences in neurodegenerative signs were found in THY-Tau22. Impaired short-term spatial memory was observed in 11-month-old THY-tau22 males but not females, which corresponded to increased neuroinflammation colocalized with pTau(T231) in the hippocampi and amygdalae of THY-Tau22 males. A robust decrease in synaptic and postsynaptic plasticity was observed in 11-month-old females but not males. HF diet caused peripheral but not central IR in mice of both sexes.


2007 ◽  
Vol 115 (S 1) ◽  
Author(s):  
S Caton ◽  
Y Bai ◽  
L Burget ◽  
L Spangler ◽  
M Reincke ◽  
...  

Author(s):  
Pablo A. Scacchi Bernasconi ◽  
Nancy P. Cardoso ◽  
Roxana Reynoso ◽  
Pablo Scacchi ◽  
Daniel P. Cardinali

AbstractCombinations of fructose- and fat-rich diets in experimental animals can model the human metabolic syndrome (MS). In rats, the increase in blood pressure (BP) after diet manipulation is sex related and highly dependent on testosterone secretion. However, the extent of the impact of diet on rodent hypophysial-testicular axis remains undefined. In the present study, rats drinking a 10% fructose solution or fed a high-fat (35%) diet for 10 weeks had higher plasma levels of luteinizing hormone (LH) and lower plasma levels of testosterone, without significant changes in circulating follicle-stimulating hormone or the weight of most reproductive organs. Diet manipulation brought about a significant increase in body weight, systolic BP, area under the curve (AUC) of glycemia after an intraperitoneal glucose tolerance test (IPGTT), and plasma low-density lipoprotein cholesterol, cholesterol, triglycerides, and uric acid levels. The concomitant administration of melatonin (25 μg/mL of drinking water) normalized the abnormally high LH levels but did not affect the inhibited testosterone secretion found in fructose- or high-fat-fed rats. Rather, melatonin per se inhibited testosterone secretion. Melatonin significantly blunted the body weight and systolic BP increase, the increase in the AUC of glycemia after an IPGTT, and the changes in circulating lipid profile and uric acid found in both MS models. The results are compatible with a primary inhibition of testicular function in diet-induced MS in rats and with the partial effectiveness of melatonin to counteract the metabolic but not the testicular sequelae of rodent MS.


2005 ◽  
Vol 332 (1) ◽  
pp. 142-148 ◽  
Author(s):  
Anthony G. Passerini ◽  
Congzhu Shi ◽  
Nadeene M. Francesco ◽  
Peiying Chuan ◽  
Elisabetta Manduchi ◽  
...  

2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Catherine Crinigan ◽  
Matthew Calhoun ◽  
Karen L. Sweazea

Chronic high fat feeding is correlated with diabetes and kidney disease. However, the impact of short-term high fat diets (HFD) is not well-understood. Six weeks of HFD result in indices of metabolic syndrome (increased adiposity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hyperleptinemia, and impaired endothelium-dependent vasodilation) compared to rats fed on standard chow. The hypothesis was that short-term HFD would induce early signs of renal disease. Young male Sprague-Dawley rats were fed either HFD (60% fat) or standard chow (5% fat) for six weeks. Morphology was determined by measuring changes in renal mass and microstructure. Kidney function was measured by analyzing urinary protein, creatinine, and hydrogen peroxide (H2O2) concentrations, as well as plasma cystatin C concentrations. Renal damage was measured through assessment of urinary oxDNA/RNA concentrations as well as renal lipid peroxidation, tumor necrosis factor alpha (TNFα), and interleukin 6 (IL-6). Despite HFD significantly increasing adiposity and renal mass, there was no evidence of early stage kidney disease as measured by changes in urinary and plasma biomarkers as well as histology. These findings suggest that moderate hyperglycemia and inflammation produced by short-term HFD are not sufficient to damage kidneys or that the ketogenic HFD may have protective effects within the kidneys.


2020 ◽  
Vol 11 (5) ◽  
pp. 489-509
Author(s):  
R. Cheng ◽  
H. Liang ◽  
Y. Zhang ◽  
J. Guo ◽  
Z. Miao ◽  
...  

This study aimed to determine the impact of Lactobacillus plantarum PC170 concurrent with antibiotic treatment and/or during the recovery phase after antibiotic treatment on the body weight, faecal bacterial composition, short-chain fatty acids (SCFAs) concentration, and splenic cytokine mRNA expression of mice. Orally administrated ceftriaxone quantitatively and significantly decreased body weight, faecal total bacteria, Akkermansia muciniphila, and Lactobacillus plantarum, and faecal SCFAs concentration. Ceftriaxone treatment also dramatically altered the faecal microbiota with an increased Chao1 index, decreased species diversities and Bacteroidetes, and more Firmicutes and Proteobacteria. After ceftriaxone intervention, these changes all gradually started to recover. However, faecal microbiota diversities were still totally different from control by significantly increased α- and β-diversities. Bacteroidetes all flourished and became dominant during the recovery process. However, mice treated with PC170 both in parallel with and after ceftriaxone treatment encouraged more Bacteroidetes, Verrucomicrobia, and Actinobacteria, and the diversity by which to make faecal microbiota was very much closer to control. Furthermore, the expression of splenic pro-inflammatory cytokine tumour necrosis factor-α mRNA in mice supplemented with PC170 during the recovery phase was significantly lower than natural recovery. These results indicated that antibiotics, such as ceftriaxone, even with short-term intervention, could dramatically damage the structure of gut microbiota and their abilities to produce SCFAs with loss of body weight. Although such damages could be partly recovered with the cessation of antibiotics, the implication of antibiotics to gut microbiota might remain even after antibiotic treatment. The selected strain PC170 might be a potential probiotic because of its contributions in helping the host animal to remodel or stabilise its gut microbiome and enhancing the anti-inflammatory response as protection from the side effects of antibiotic therapy when it was administered in parallel with and after antibiotic treatment.


2004 ◽  
Vol 50 (10) ◽  
pp. 139-144 ◽  
Author(s):  
A. Oehmen ◽  
Z. Yuan ◽  
L.L. Blackall ◽  
J. Keller

The effectiveness of enhanced biological phosphorus removal (EBPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very low level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs, as indicated by their much lower uptake rates.


2017 ◽  
Vol 52 (3) ◽  
pp. 174
Author(s):  
Purwo Sri Rejeki ◽  
Harjanto Harjanto ◽  
Raden Argarini ◽  
Imam Subadi

The aim of this study was to determine the comparative effects of EA (EA) on the CV12, ST36 and ST40 to weight gain prevention over the short-term regulation of energy balance. The study was conducted with a completely randomized design. Rats were divided into five groups: negative control group (no treatment, n=5), positive control (sham EA/back, n=5), EA CV 12 (n=6), EA ST 36 (n=6) and EA ST 40 (n=7). Rats were exposed to high-fat diet for two weeks and EA was simultaneously performed once daily, five days a week for two weeks with 2 Hz, for 10 minutes with continuous wave. Body weight, BMI, front limb circumference and rear were measured during study. Levels of blood glucose, cholesterol, triglycerides, LDL and HDL were measured at the end of the study; which reflects the short-term regulation of energy homeostasis. For weight loss, EA CV12, ST36 and ST40 group have lost weight significantly compared to the negative and positive control group. The ST40 group has a significant decrease than ST36 and CV12. The most significant decrease in BMI found in the ST40 group. EA did not affect blood glucose levels, but modulated blood lipid profile. In ST 40 group there was a significant decrease in cholesterol, LDL and triglycerides. EA at point ST 40 is potential in preventing increased body weight and BMI in rats exposed to high-fat diet compared to the CV 12 and ST 36. ST 40 is a point with a potential of lowering LDL and triglycerides serum so that it can play a role in the short term regulation of energy homeostasis but also in the prevention of dyslipidemia.


Sign in / Sign up

Export Citation Format

Share Document