scholarly journals Formula Compatibility Identification of Dachengqi Decoction Based on the Effects of Absorbed Components in Cerulein-Injured Pancreatic AR42J Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Zhang ◽  
Lin Zhu ◽  
Jia Wang ◽  
Jianlei Zhao ◽  
Xianlin Zhao ◽  
...  

Objective. To identify the herbal formula compatibility law based on the effects of the absorbed components from DCQD on the cerulein-injured AR42J cells.Methods. AR42J cells were pretreated for 30 min with or without the different concentrations of the absorbed components from DCQD individually or in combination or DCQD and coincubated with cerulein (10 nM) for a further 24 h. Cell viability, lactate dehydrogenase (LDH) release, and the levels of apoptosis and necrosis were measured.Results. Compared to DCQD, the individual or combination components partially protected cerulein-injured AR42J cells by increasing cell viability, reducing LDH release, and promoting apoptosis. Rhein, naringin, and honokiol were the main absorbed components from DCQD in cerulein-induced pancreatitis. Moreover, rhein in combination with naringin and honokiol had synergistic effects in protecting cerulein-injured AR42J cells and was better than the individual or the pairwise combination of the three components.Conclusions. The ten effective components from DCQD may elicit similar protective effects as DCQD on cerulein-induced pancreatitis. The principle of the formula compatibility of DCQD may be identified based on the effects of its absorbed components in cerulein-injured AR42J cells.

2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


2012 ◽  
pp. 555-565 ◽  
Author(s):  
D.-F. LI ◽  
J. TIAN ◽  
X. GUO ◽  
L.-M. HUANG ◽  
Y. XU ◽  
...  

MicroRNAs are emerging as important regulators of cardiac function. This study investigated the role of microRNA-24 (miR-24) in ischemic cardiomyocytes, based on the observation that miR-24 expression was significantly enhanced in the ischemic myocardium of rats. Using primary cultured rat cardiomyocytes, cell injury was induced by ischemic conditions, and the cells were evaluated for changes in lactate dehydrogenase (LDH) release, cell viability, apoptosis and necrosis. The results showed that miR-24 was increased in myocytes exposed to ischemia. When miR-24 was further overexpressed in ischemic myocytes using the mimic RNA sequence, LDH release was reduced, cell viability was enhanced, and apoptosis and necrosis rates were both decreased. By contrast, a deficiency in miR-24 resulted in the largest LDH release, lowest cell viability and highest apoptosis and necrosis rates in normal and ischemic myocytes, with significant changes compared to that of non-transfected myocytes. Additionally, the mRNA and protein levels of the pro-apoptotic gene, BCL2L11, were down-regulated by miR-24 overexpression and up-regulated by miR-24 deficiency. The luciferase reporter assay confirmed BCL2L11 to be a target of miR-24. Overall, this study showed a protective role for miR-24 against myocardial ischemia by inhibiting BCL2L11, and may represent a potential novel treatment for ischemic heart disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Brian Sacks ◽  
Halil Onal ◽  
Rose Martorana ◽  
Amogh Sehgal ◽  
Amanda Harvey ◽  
...  

Abstract Background Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. Methods We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. Results Dox (0.5–50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05–10 μM, n = 6) and SKQ1 (0.05–10 μM, n = 6), but not vitamin C (1–2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5–1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. Conclusion The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.


2015 ◽  
Vol 37 (4) ◽  
pp. 1431-1441 ◽  
Author(s):  
Qing Song ◽  
Wen-Li Gou ◽  
Rong Zhang

Background/Aims: Oxidative stress-induced cell damage is involved in many neurological diseases. FAM3A is the first member of family with sequence similarity 3 (FAM3) gene family and its biological function remains largely unknown. Methods: This study aimed to determine its role in hydrogen peroxide (H2O2) induced injury in neuronal HT22 cells. The protective effects were measured by cell viability, lactate dehydrogenase (LDH) release and apoptosis, and oxidative stress was assayed by reactive oxygen species (ROS) generation, ATP synthesis and lipid peroxidation. By using selective inhibitors, the involvement of PI3K/Akt and MEK/ERK pathways were also investigated. Results: The results of fluorescence staining revealed that H2O2 significantly decreased the expression of FAM3A protein, which was shown to be subcellularly located in mitochondria. Up-regulation of FAM3A by lentivirus transfection markedly increased cell viability and decreased LDH release after H2O2 treatment. The anti-apoptotic activity of FAM3A was demonstrated by the reduced mitochondrial cytochrome c release, decreased activation of caspase-3 and the results of flow cytometry. Overexpression of FAM3A attenuated intracellular ROS generation and loss of ATP production induced by H2O2, and subsequently inhibited lipid peroxidation. In addition, overexpression of FAM3A significantly increased the activation of Akt and ERK in H2O2 injured HT22 cells. By using Akt and ERK specific inhibitors, we found that inhibition of PI3K/Akt, but not MEK/ERK pathway, partially prevented FAM3A-induced protection against H2O2. Conclusion: These results suggest that FAM3A has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on the activation of PI3K/Akt pathway.


2019 ◽  
Vol 400 (8) ◽  
pp. 1059-1068 ◽  
Author(s):  
Xiaofen Zhang ◽  
Taishan Gao ◽  
Yanhua Wang

Abstract Pancreatitis is a disease caused by inflammation of pancreatic acinar cells. Geniposide (GEN) possesses anti-inflammation activities. Hence, we investigated the effects of GEN on lipopolysaccharide (LPS)-stimulated AR42J cells. AR42J cells were stimulated by LPS and then treated with GEN and/or transfected with miR-27a mimic or negative control. Cell viability and cell apoptosis were detected using the Cell Counting Kit-8 and flow cytometry, respectively. All related proteins were measured by Western blot. The expression of miR-27a was detected by quantitative real time-polymerase chain reaction (qRT-PCR). Moreover, the expression of inflammatory cytokines interleukin-6 (IL-6) and monocyte chemoattractant protein (MCP)-1 was analyzed by qRT-PCR and Western blot. LPS significantly decreased cell viability, and enhanced cell apoptosis and IL-6, MCP-1 expression. Then GEN administration alleviated inflammatory injury by increasing cell viability, while reducing apoptosis, and IL-6 and MCP-1 expression. GEN downregulated miR-27a expression which was induced by LPS. Transfection with miR-27a mimic partially eliminated the protective effects of GEN. The phosphorylation of JNK and c-Jun was downregulated by GEN while upregulated by miR-27a overexpression. GEN alleviates LPS-induced AR42J cell injury as evidenced by promoting cell growth, and upregulation of IL-6 and MCP-1. This process might be modulated by down-regulating miR-27a and inactivation of JNK pathway.


2019 ◽  
Vol 19 (9) ◽  
pp. 673-682 ◽  
Author(s):  
Panpan Chang ◽  
Yuzi Tian ◽  
Aaron M. Williams ◽  
Umar F. Bhatti ◽  
Baoling Liu ◽  
...  

Background: Histone deacetylase (HDAC) 6 inhibitors have demonstrated significant protective effects in traumatic injuries. However, their roles in neuroprotection and underlying mechanisms are poorly understood. This study sought to investigate the neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose deprivation (OGD) in HT22 hippocampal cells. Methods: HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl- 2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β were analyzed by Western blot analysis. Results: Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy. Tub-A significantly increased cell viability and attenuated LDH release after exposure to OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells following OGD and preserved the mitochondrial membrane potential. Tub-A also attenuated the release of cytochrome c from the mitochondria into the cytoplasm and suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by the increased phosphorylation of Akt and GSK3β signaling pathways. Conclusion: HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated apoptosis.


2020 ◽  
Vol 56 (1) ◽  
pp. 74-81
Author(s):  
Christina C Tam ◽  
Camillia K Lui ◽  
Katherine J Karriker-Jaffe

Abstract Aims Greater neighborhood co-ethnic density (living in proximity with people sharing an ethnicity) and being foreign-born each can protect against risky drinking, but little is known about whether these two factors interact. Using a representative sample of Latinos and Asians from California, USA, we investigate main and interactive effects of neighborhood co-ethnic density and nativity status in relation to heavy episodic drinking (HED). Methods This study uses the California Health Interview Survey (N = 30,203) linked with neighborhood data to investigate associations of co-ethnic density and nativity status with HED. Co-ethnic density was based on matching each respondent’s ethnicity to the proportion of residents of the corresponding group in their Census tract. Using weighted logistic regression, we first examined main effects of neighborhood co-ethnic density and respondent nativity status on HED. Next, we assessed the interaction of co-ethnic density and nativity status. Finally, we estimated nativity-stratified models to investigate variation in effects of co-ethnic density. Results Co-ethnic density was not associated with HED for the full sample, but US-born nativity status was associated with increased odds of past-year HED. The interaction model showed co-ethnic density and nativity had synergistic effects, whereby greater levels of neighborhood co-ethnic density buffered risk associated with being US-born. Further, greater neighborhood co-ethnic density was associated with reduced odds of HED for US-born respondents, but it was not associated with HED for foreign-born respondents. Conclusions Protective effects of high neighborhood co-ethnic density on HED are stronger for US-born than for foreign-born Latinos and Asians in California.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sheng-Yu Cui ◽  
Wei Zhang ◽  
Zhi-Ming Cui ◽  
Hong Yi ◽  
Da-Wei Xu ◽  
...  

Abstract Background Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. Methods Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. Results We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. Conclusion In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1204
Author(s):  
Heike Wanka ◽  
Philipp Lutze ◽  
Alexander Albers ◽  
Janine Golchert ◽  
Doreen Staar ◽  
...  

A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases.


Sign in / Sign up

Export Citation Format

Share Document