scholarly journals An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Syam Prakash Somasekharan ◽  
Amal El-Naggar ◽  
Poul H. Sorensen ◽  
Yuzhuo Wang ◽  
Hongwei Cheng

Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma.In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells.In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted.

Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wei-Jan Huang ◽  
Yu-Chih Liang ◽  
Shuang-En Chuang ◽  
Li-Ling Chi ◽  
Chi-Yun Lee ◽  
...  

HDAC inhibitors (HDACis) have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP), and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231) and rat glioma cells (C6), with an IC50ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1), gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1,p21(Waf1/Cip1)gene expression had markedly increased whilecyclin B1andD1gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor genep53in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activityin vitroandin vivo.


Marine Drugs ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 11 ◽  
Author(s):  
Elena Catanzaro ◽  
Cinzia Calcabrini ◽  
Anupam Bishayee ◽  
Carmela Fimognari

Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.


2020 ◽  
Vol 49 (47) ◽  
pp. 17173-17182
Author(s):  
Wan-Qiong Huang ◽  
Chuan-Xian Wang ◽  
Tao Liu ◽  
Zi-Xin Li ◽  
Chen Pan ◽  
...  

A structurally fine-tuned nitridoosmium(vi) complex induces HepG2 cell apoptosis through activation of the mitochondrial pathway and death receptor pathway, showing promising in vitro and in vivo anticancer activities.


2018 ◽  
Vol 399 (4) ◽  
pp. 321-335 ◽  
Author(s):  
Stephen Safe ◽  
Vijayalekshmi Nair ◽  
Keshav Karki

AbstractMetformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing.In vivoandin vitrocancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2455
Author(s):  
Eungyeong Jang ◽  
Jang-Hoon Lee

The flowering plant genus Alisma, which belongs to the family Alismataceae, comprises 11 species, including Alisma orientale, Alisma canaliculatum, and Alisma plantago-aquatica. Alismatis rhizome (Ze xie in Chinese, Takusha in Japanese, and Taeksa in Korean, AR), the tubers of medicinal plants from Alisma species, have long been used to treat inflammatory diseases, hyperlipidemia, diabetes, bacterial infection, edema, oliguria, diarrhea, and dizziness. Recent evidence has demonstrated that its extract showed pharmacological activities to effectively reverse cancer-related molecular targets. In particular, triterpenes naturally isolated from AR have been found to exhibit antitumor activity. This study aimed to describe the biological activities and plausible signaling cascades of AR and its main compounds in experimental models representing cancer-related physiology and pathology. Available in vitro and in vivo studies revealed that AR extract possesses anticancer activity against various cancer cells, and the efficacy might be attributed to the cytotoxic and antimetastatic effects of its alisol compounds, such as alisol A, alisol B, and alisol B 23-acetate. Several beneficial functions of triterpenoids found in AR might be due to p38 activation and inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways. Moreover, AR and its triterpenes inhibit the proliferation of cancer cells that are resistant to chemotherapy. Thus, AR and its triterpenes may play potential roles in tumor attack, as well as a therapeutic remedy alone and in combination with other chemotherapeutic drugs.


2020 ◽  
Vol 12 (8) ◽  
pp. 655-672 ◽  
Author(s):  
Feifei Yang ◽  
Lina Han ◽  
Na Zhao ◽  
Yang Yang ◽  
Di Ge ◽  
...  

Aim:   Histone deacetylases (HDACs) are one of the validated targets for cancer treatments. In our previous work, we designed a series of bis-substituted aromatic amide HDAC inhibitors (HDACis), among which compounds 7 and 8 showed promising anticancer effects. However, the low solubilities prevented their subsequent developments. We developed additional thiophene-based hydroxamate HDACis in order to improve their physicochemical properties. Materials & methods: In vitro biological evaluations of these analogs revealed potent antiproliferative and antimigrated activities. More importantly, compound 10h exhibited excellent in vivo antitumor activities in MDA-MB-231 xenograft model mice. Furthermore, 10h showed better anticancer activities and drug-like properties than 7. Results & conclusion: Our results proved that thiophene-based hydroxamate HDACis can serve as a promising framework for developing potential anticancer agents.


2021 ◽  
Vol 10 (1) ◽  
pp. 1895-1911
Author(s):  
Najmeh Alsadat Abtahi ◽  
Seyed Morteza Naghib ◽  
Fatemeh Haghiralsadat ◽  
Javad Zavar Reza ◽  
Fatemeh Hakimian ◽  
...  

Abstract Cancer treatment is challenging due to late-stage diagnosis, drug resistance and systemic toxicity of chemotherapeutic agents. The formulation of the drug into nanoparticles (NPs) can enhance the treatment efficacy and effectiveness. Therefore, a new cationic niosomal formulation, which contains Tween 80, Tween 60, cholesterol and lysine amino acid as a platform model to enhance transfection efficacy and reach more acceptable stability, and curcumin (Cur) as a biological anti-cancer drug, are introduced. Here, the authors focused on the design and synthesis of novel lysine-mediated niosomal NPs for the effectual and controlled release of the antitumor agent, Cur, and turned to optimize niosome formulations, concerning the volume of cholesterol and surfactant to implement these anticancer agents, simultaneously. The characterization of NPs s was carried out and the results showed the successful synthesis of Cur-entrapped niosomal NPs with high efficacy, sufficient positive charges and a favorable size (95/33 nm). The in vitro studies have been performed to investigate the cytotoxicity, cellular uptake and apoptosis of normal and cancer cells treated by black niosome, free Cur and niosom-loaded Cur. The results showed that implementing agents by niosome caused enhanced cytotoxicity, uptake and anticancer activity in cancer cells in comparison with normal cells. Furthermore, the effect of this nanodrug was surveyed on the 4T1 xenografted Balb/C mouse tumor model. Cur delivery to cancer models caused a higher tumor inhibition rate than in other groups.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jin-Mu Yi ◽  
Sarah Shin ◽  
No Soo Kim ◽  
Ok-Sun Bang

Abstract Background The dried fruits of Forsythia suspensa has generally been used to clear heat and detoxify in traditional Korean and Chinese medicine. Oxaliplatin is a first-line treatment chemotherapeutic agent for advanced colorectal cancer, but it induces peripheral neuropathy as an adverse side effect affecting the treatment regimen and the patient’s quality of life. The present study was conducted to evaluate the neuroprotective effects of an aqueous extract of F. suspensa fruits (EFSF) on oxaliplatin-induced peripheral neuropathy. Methods The chemical components from EFSF were characterized and quantified using the ultra-high performance liquid chromatography-diode array detector system. The cytotoxicities of anticancer drugs in cancer cells and PC12 cells were assessed by the Ez-Cytox viability assay. To measure the in vitro neurotoxicity, the neurite outgrowth was analyzed in the primary dorsal root ganglion (DRG) cells, and neural PC12 cells that were differentiated with nerve growth factor. To evaluate the in vivo neuroprotective activity, the von Frey test was performed in six-week-old male mice (C57BL/6) receiving EFSF (60–600 mg/kg) in the presence of 20–30 mg/kg cumulative doses of oxaliplatin. Thereafter, the mice were euthanized for immunohistochemical staining analysis with an antibody against PGP9.5. Results EFSF attenuated the cytotoxic activities of the various anticancer drugs in neural PC12 cells, but did not affect the anticancer activity of oxaliplatin in human cancer cells. Oxaliplatin remarkably induced neurotoxicities including cytotoxicity and the inhibited neurite outgrowth of DRG and neural PC12 cells. However, the co-treatment of EFSF (100 μg/ml) with oxaliplatin completely reversed the oxaliplatin-induced neurotoxicity. Forsythoside A, the major component of EFSF, also exerted remarkable neuroprotective effects against the oxaliplatin-induced neurotoxicity. In addition, EFSF (60–200 mg/kg) significantly alleviated the oxaliplatin-induced mechanical allodynia and loss of intra-epidermal nerve fiber to the levels of the vehicle control in the mouse peripheral neuropathy model. Conclusions EFSF could be considered a useful herbal medicine for the treatment of peripheral neuropathy in cancer patients receiving chemotherapy with oxaliplatin.


Sign in / Sign up

Export Citation Format

Share Document