scholarly journals A Novel Space-Time-Speed Method for Increasing the Passing Capacity with Safety Guaranteed of Railway Station

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Junfeng Wang ◽  
Yang Yu ◽  
Renwei Kang ◽  
Jungang Wang

A method for improving the passing capacity of a station without adding any track and equipment is proposed in this paper. In the process of handling train routes, by transforming the existing fixed train-approaching locking section into a variable mode, the route locking time is shortened and in-station resource consumption is reduced. This approach improves the capacity of the station. At the same time, delay of the train can be quickly returned to normal. A method of variable train-approaching locking section is discussed; a mathematical model for increasing station passing capacity is shown. Comparison between the impact of a variable train-approaching locking section and a fixed mode on the station passing capacity is shown.

2018 ◽  
Vol 11 (05) ◽  
pp. 1850067 ◽  
Author(s):  
Maoxing Liu ◽  
Yuting Chang ◽  
Haiyan Wang ◽  
Benxing Li

In this paper, a mathematical model to study the impact of Twitter in controlling infectious disease is proposed. The model includes the dynamics of “tweets” which may enhance awareness of the disease and cause behavioral changes among the public, thus reducing the transmission of the disease. Furthermore, the model is improved by introducing a time delay between the outbreak of disease and the release of Twitter messages. The basic reproduction number and the conditions for the stability of the equilibria are derived. It is shown that the system undergoes Hopf bifurcation when time delay is increased. Finally, numerical simulations are given to verify the analytical results.


2007 ◽  
Author(s):  
Heather Barnes Truelove ◽  
Jeff Joireman ◽  
Donelle C. Posey ◽  
Adrian Spencer ◽  
Nicole Hoffer

2020 ◽  
pp. 108-115 ◽  
Author(s):  
Vladimir P. Budak ◽  
Anton V. Grimaylo

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.


2020 ◽  
Author(s):  
Ayan Chatterjee ◽  
Ram Bajpai ◽  
Pankaj Khatiwada

BACKGROUND Lifestyle diseases are the primary cause of death worldwide. The gradual growth of negative behavior in humans due to physical inactivity, unhealthy habit, and improper nutrition expedites lifestyle diseases. In this study, we develop a mathematical model to analyze the impact of regular physical activity, healthy habits, and a proper diet on weight change, targeting obesity as a case study. Followed by, we design an algorithm for the verification of the proposed mathematical model with simulated data of artificial participants. OBJECTIVE This study intends to analyze the effect of healthy behavior (physical activity, healthy habits, and proper dietary pattern) on weight change with a proposed mathematical model and its verification with an algorithm where personalized habits are designed to change dynamically based on the rule. METHODS We developed a weight-change mathematical model as a function of activity, habit, and nutrition with the first law of thermodynamics, basal metabolic rate (BMR), total daily energy expenditure (TDEE), and body-mass-index (BMI) to establish a relationship between health behavior and weight change. Followed by, we verified the model with simulated data. RESULTS The proposed provable mathematical model showed a strong relationship between health behavior and weight change. We verified the mathematical model with the proposed algorithm using simulated data following the necessary constraints. The adoption of BMR and TDEE calculation following Harris-Benedict’s equation has increased the model's accuracy under defined settings. CONCLUSIONS This study helped us understand the impact of healthy behavior on obesity and overweight with numeric implications and the importance of adopting a healthy lifestyle abstaining from negative behavior change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marcos Amaku ◽  
Dimas Tadeu Covas ◽  
Francisco Antonio Bezerra Coutinho ◽  
Raymundo Soares Azevedo ◽  
Eduardo Massad

Abstract Background At the moment we have more than 177 million cases and 3.8 million deaths (as of June 2021) around the world and vaccination represents the only hope to control the pandemic. Imperfections in planning vaccine acquisition and difficulties in implementing distribution among the population, however, have hampered the control of the virus so far. Methods We propose a new mathematical model to estimate the impact of vaccination delay against the 2019 coronavirus disease (COVID-19) on the number of cases and deaths due to the disease in Brazil. We apply the model to Brazil as a whole and to the State of Sao Paulo, the most affected by COVID-19 in Brazil. We simulated the model for the populations of the State of Sao Paulo and Brazil as a whole, varying the scenarios related to vaccine efficacy and compliance from the populations. Results The model projects that, in the absence of vaccination, almost 170 thousand deaths and more than 350 thousand deaths will occur by the end of 2021 for Sao Paulo and Brazil, respectively. If in contrast, Sao Paulo and Brazil had enough vaccine supply and so started a vaccination campaign in January with the maximum vaccination rate, compliance and efficacy, they could have averted more than 112 thousand deaths and 127 thousand deaths, respectively. In addition, for each month of delay the number of deaths increases monotonically in a logarithmic fashion, for both the State of Sao Paulo and Brazil as a whole. Conclusions Our model shows that the current delay in the vaccination schedules that is observed in many countries has serious consequences in terms of mortality by the disease and should serve as an alert to health authorities to speed the process up such that the highest number of people to be immunized is reached in the shortest period of time.


2021 ◽  
Vol 13 (8) ◽  
pp. 4105
Author(s):  
Yupei Jiang ◽  
Honghu Sun

Leisure walking has been an important topic in space-time behavior and public health research. However, prior studies pay little attention to the integration and the characterization of diverse and multilevel demands of leisure walking. This study constructs a theoretical framework of leisure walking behavior demands from three different dimensions and levels of activity participation, space-time opportunity, and health benefit. On this basis, through a face-to-face survey in Nanjing, China (N = 1168, 2017–2018 data), this study quantitatively analyzes the characteristics of leisure walking demands, as well as the impact of the built environment and individual factors on it. The results show that residents have a high demand for participation and health benefits of leisure walking. The residential neighborhood provides more space opportunities for leisure walking, but there is a certain constraint on the choice of walking time. Residential neighborhood with medium or large parks is more likely to satisfy residents’ demands for engaging in leisure walking and obtaining high health benefits, while neighborhood with a high density of walking paths tends to limit the satisfaction of demands for space opportunity and health benefit. For residents aged 36 and above, married, or retired, their diverse demands for leisure walking are more likely to be fulfilled, while those with high education, medium-high individual income, general and above health status, or children (<18 years) are less likely to be fulfilled. These finding that can have important implications for the healthy neighborhood by fully considering diverse and multilevel demands of leisure walking behavior.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingyu Li ◽  
Amin Ghadami ◽  
John M. Drake ◽  
Pejman Rohani ◽  
Bogdan I. Epureanu

AbstractThe pandemic of COVID-19 has become one of the greatest threats to human health, causing severe disruptions in the global supply chain, and compromising health care delivery worldwide. Although government authorities sought to contain the spread of SARS-CoV-2, by restricting travel and in-person activities, failure to deploy time-sensitive strategies in ramping-up of critical resource production exacerbated the outbreak. Here, we developed a mathematical model to analyze the effects of the interaction between supply chain disruption and infectious disease dynamics using coupled production and disease networks built on global data. Analysis of the supply chain model suggests that time-sensitive containment strategies could be created to balance objectives in pandemic control and economic losses, leading to a spatiotemporal separation of infection peaks that alleviates the societal impact of the disease. A lean resource allocation strategy can reduce the impact of supply chain shortages from 11.91 to 1.11% in North America. Our model highlights the importance of cross-sectoral coordination and region-wise collaboration to optimally contain a pandemic and provides a framework that could advance the containment and model-based decision making for future pandemics.


Sign in / Sign up

Export Citation Format

Share Document