scholarly journals The Role of the Innate Immune System in Oncolytic Virotherapy

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Tuan Anh Phan ◽  
Jianjun Paul Tian

The complexity of the immune responses is a major challenge in current virotherapy. This study incorporates the innate immune response into our basic model for virotherapy and investigates how the innate immunity affects the outcome of virotherapy. The viral therapeutic dynamics is largely determined by the viral burst size, relative innate immune killing rate, and relative innate immunity decay rate. The innate immunity may complicate virotherapy in the way of creating more equilibria when the viral burst size is not too big, while the dynamics is similar to the system without innate immunity when the viral burst size is big.

Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


2019 ◽  
Vol 49 (2) ◽  
Author(s):  
Francesca Millanta ◽  
Simona Sagona ◽  
Maurizio Mazzei ◽  
Mario Forzan ◽  
Alessandro Poli ◽  
...  

ABSTRACT: The innate immune system of honeybees mainly consists in antimicrobial peptides, cellular immunity and melanisation. In order to investigate the immune response of honeybees to immune stressors, three stress degrees were tested. Newly emerged bees naturally DWV-infected were collected from a Varroa mite-free apiary and divided into three experimental groups: naturally DWV infected bees, PBS injected bees, and artificially DWV super infected bees. Phenoloxidase activity and haemolymph cellular subtype count were investigated. Phenoloxidase activity was highest (P<0.05) in DWV-superinfected bees, and the haemocyte population differed within the three observed groups. Although, immune responses following DWV infection have still not been completely clarified, this investigation sheds light on the relation between cell immunity and the phenoloxidase activity of DWV-naturally infected honeybees exposed to additional stress such as injury and viral superinfection.


2019 ◽  
Vol 12 (07) ◽  
pp. 1950077 ◽  
Author(s):  
Sulanie Perera ◽  
S. S. N. Perera

Dengue is an acute arthropode-borne virus, belonging to the family Flaviviridae. Currently, there are no vaccines or treatments available against dengue. Thus it is important to understand the dynamics of dengue in order to control the infection. In this paper, we study the long-term dynamics of the model that is presented in [S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Comput. Math. Methods Med. 2018 (2018) 8798057, 18 pp. https://doi.org/10.1155/2018/8798057 ] which describes the interaction of virus with infected and uninfected cells in the presence of innate and humoral immune responses. It was found the model has three equilibria, namely: infection free equilibrium, no immune equilibrium and endemic equilibrium, then analyzed its stability analytically. The analytical findings of each model have been exemplified by numerical simulations. Given the fact that intensity of dengue virus replication at early times of infection could determine clinical outcomes, it is important to understand the impact of innate immunity, which is believed to be the first line of defense against an invading pathogen. For this we carry out a simulation case study to investigate the importance of innate immune response on dengue virus dynamics. A comparison was done assuming that innate immunity was active; innate immunity was in quasi-steady state and innate immunity was inactive during the virus replication process. By a further analysis of the qualitative behavior of the quasi-steady state, it was observed that innate immune response plays a pivotal role in dengue virus dynamics. It can change the dynamical behavior of the system and is essential for the virus clearance.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2012 ◽  
Vol 19 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Zhiming Pan ◽  
Qiuxia Cong ◽  
Shizhong Geng ◽  
Qiang Fang ◽  
Xilong Kang ◽  
...  

ABSTRACTRecombinant attenuatedSalmonellavaccines have been extensively studied, with a focus on eliciting specific immune responses against foreign antigens. However, very little is known about the innate immune responses, particularly the role of flagellin, in the induction of innate immunity triggered by recombinant attenuatedSalmonellain chickens. In the present report, we describe twoSalmonella entericaserovar Typhimurium vaccine strains, wild-type (WT) or flagellin-deficient (flhD)Salmonella, both expressing the fusion protein (F) gene of Newcastle disease virus. We examined the bacterial load and spatiotemporal kinetics of expression of inflammatory cytokine, chemokine, and Toll-like receptor 5 (TLR5) genes in the cecum, spleen, liver, and heterophils following oral immunization of chickens with the twoSalmonellastrains. TheflhDmutant exhibited an enhanced ability to establish systemic infection compared to the WT. In contrast, the WT strain induced higher levels of interleukin-1β (IL-1β), CXCLi2, and TLR5 mRNAs in cecum, the spleen, and the heterophils than theflhDmutant at different times postinfection. Collectively, the present data reveal a fundamental role of flagellin in the innate immune responses induced by recombinant attenuatedSalmonellavaccines in chickens that should be considered for the rational design of novel vaccines for poultry.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Ivan V. Kuzmin ◽  
Toni M. Schwarz ◽  
Philipp A. Ilinykh ◽  
Ingo Jordan ◽  
Thomas G. Ksiazek ◽  
...  

ABSTRACT Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution.


2020 ◽  
Author(s):  
Richa Mishra ◽  
Sanjana Bhattacharya ◽  
Bhupendra S Rawat ◽  
Ashish Kumar ◽  
Akhilesh Kumar ◽  
...  

AbstractPrecise regulation of innate immunity is crucial for the development of appropriate host immunity against microbial infections and the maintenance of immune homeostasis. The microRNAs are small non-coding RNA, post-transcriptional regulator of multiple genes and act as a rheostat for protein expression. Here, we identified microRNA(miR)-30e-5p (miR-30e) induced by the hepatitis B virus (HBV) and other viruses that act as a master regulator for innate immune responses. Moreover, pegylated type I interferons treatment to HBV patients for viral reduction also reduces the miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in systemic lupus erythematous (SLE) patients and SLE mouse model. Mechanistically, the miR-30e targets multiple negative regulators namely TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1, SOCS3 of innate immune signaling pathways and enhances innate immune responses. Furthermore, sequestering of endogenous miR-30e in PBMCs of SLE patients and SLE mouse model respectively by the introduction of antagomir and locked nucleic acid based inhibitor significantly reduces type I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 143
Author(s):  
Kevin Groen ◽  
Stefan van Nieuwkoop ◽  
Ron Fouchier ◽  
Bernadette van den Hoogen

The human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a major cause of respiratory illness, primarily in young children, the elderly, and immunocompromised individuals. Having a fundamental understanding of the viral evasion of innate immune responses is crucial for the rational design of antiviral therapies. Several studies have reported on how HMPV subverts innate immune responses, with roles for SH, G, and M2.2 proteins. However, these studies often conflict. It has also been reported that eliminating the M2.2 ORF results in insertions and deletions around the M2.2 ORF, which could result in an M2.2-independent interaction with the immune system. We aimed to investigate how HMPV interacts with the innate immune response. Therefore, recombinant viruses lacking M2.2, SH, or G protein expression were generated either by deletion or by ablation of protein expression through mutations. Phenotypic analysis revealed that viruses lacking M2.2 expression are attenuated on interferon-competent A549 cells, but not on interferon-deficient cells. Deletion of ORFs compared to ablation of expression through mutations did not result in differences in replication kinetics. Viruses lacking M2.2 expression induced interferon-ẞ protein production, indicating interferon-antagonistic functions of the M2.2 protein, as previously reported. Phenotypic analysis of A549 cells knocked out for RIG-I, MAVS, and PKR revealed the role of RIG-I in the immune response towards HMPV. Next-generation sequencing analysis of viruses lacking M2.2 expression but not G or SH expression showed hypermutation throughout the virus genome. The hypermutation patterns suggest a role for adenosine deaminase acting on RNA (ADAR) editing. We addressed the question of whether RIG-I activation by viruses lacking M2.2 expression is due to hypermutated genomes or the absence of M2.2 as an interferon antagonist. Additionally, we investigated the role of ADAR in HMPV infection. We present our data on the possible influence of ADAR in HMPV infection by next-generation sequencing of viral stocks in cell knockdowns of ADAR generated by CRISPR-interference.


2005 ◽  
Vol 5 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Annamaria Vezzani

In recent years, increasing evidence has indicated that immune and inflammatory reactions occur in brain in various central nervous system (CNS) diseases. Furthermore, inflammatory processes, such as the production of proinflammatory cytokines and related molecules, have been described in brain after seizures induced in experimental models and in clinical cases of epilepsy. Although little is known about the role of inflammation in epilepsy, it has been hypothesized that activation of the innate immune system and associated inflammatory reactions in brain may mediate some of the molecular and structural changes occurring during and after seizure activity. Whether the innate immune response that takes place in epileptic tissue is beneficial or noxious to the CNS is still an open and intriguing question that should be addressed by further investigations.


Sign in / Sign up

Export Citation Format

Share Document