scholarly journals In Vivo and In Vitro Hepatoprotective Effects of Geranium koreanum Methanolic Extract via Downregulation of MAPK/Caspase-3 Pathway

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Md Rashedunnabi Akanda ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
Hyun-Jin Tae ◽  
Weishun Tian ◽  
...  

Geranium koreanum (GK) is an indigenous Chinese herbal medicine widely used for the treatment of various inflammation and liver disorders. However, the exact mechanism of action of GK remains unknown. This study aimed to investigate the protective effect and related molecular mechanism of GK on NaAsO2-induced cytotoxicity in HepG2 cells and liver damage in mice. The cytoprotective role of GK was assessed on HepG2 cells using MTT assay. Oxidative stress and lactate dehydrogenase levels were measured with ROS and LDH assay. Histopathology and serum enzymes levels were estimated. The molecular mechanism was evaluated by qPCR and immunoblotting to ensure the hepatoprotective role of GK against NaAsO2 intoxication in mice. We found cotreatment with GK significantly attenuated NaAsO2-induced cell viability loss, intracellular ROS, and LDH release. Hepatic histopathology and serum biochemical parameters, ALT, and AST were notably improved by cotreatment with GK. Beside, GK markedly altered both mRNA and protein expression level of MAPK. The proapoptotic and antiapoptotic protein Bax/Bcl-2 ratio was significantly regulated by GK. Moreover, GK remarkably suppressed the postapoptotic transcription protein cleaved caspase-3 expression. The present study reveals that GK possesses hepatoprotective activity which is probably involved in the modulation of the MAPK/caspase-3 pathway.

Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


2020 ◽  
Vol 21 (21) ◽  
pp. 8042
Author(s):  
Fran Quilty ◽  
Anne-Marie Byrne ◽  
John Aird ◽  
Sheeren El Mashad ◽  
Adolfo Parra-Blanco ◽  
...  

Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ching-Yuan Wu ◽  
Yu-Shih Lin ◽  
Yao-Hsu Yang ◽  
Li-Hsin Shu ◽  
Yu-Ching Cheng ◽  
...  

Outbreak of coronavirus disease 2019 occurred in Wuhan and has rapidly spread to almost all parts of world. GB-1, the herbal formula from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, is used for the prophylaxis of SARS-CoV-2 in Taiwan. In this study, we investigated that the effect of GB-1 and the index compounds of GB-1 on the ACE2 and TMPRSS2 expression through in vitro and in vivo study. In our result, GB-1 can inhibit ACE2 and TMPRSS2 protein expression in HepG2 cells, 293T cells, and Caco-2 cells without cytotoxicity. For the mouse model, GB-1 treatment could decrease ACE2 and TMPRSS2 expression levels of the lung and kidney tissue without adverse effects, including nephrotoxicity and hepatotoxicity. In the compositions of GB-1, 0.5–1 mg/ml of Glycyrrhiza uralensis Fisch. ex DC. extract could not inhibit ACE2 mRNA and protein expression in HepG2 cells. In addition, theaflavin-3-gallate could inhibit protein expression of ACE2 and TMPRSS2 without significant cytotoxicity. Our results suggest that GB-1 and theaflavin-3-gallate could act as potential candidates for prophylaxis or treatment of SARS-CoV-2 infection through inhibiting protein expression of ACE2 and TMPRSS2 for the further study.


2013 ◽  
Vol 57 (9) ◽  
pp. 4463-4469 ◽  
Author(s):  
Christophe Isnard ◽  
Brigitte Malbruny ◽  
Roland Leclercq ◽  
Vincent Cattoir

ABSTRACTAs opposed toEnterococcus faecalis, which is intrinsically resistant to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) by production of the ABC protein Lsa(A),Enterococcus faeciumis naturally susceptible. Since this phenotype may be selected forin vivoby quinupristin-dalfopristin (Q-D), the aim of this study was to investigate the molecular mechanism of acquired LSAP resistance inE. faecium. Six LSAP-resistantin vitromutants ofE. faeciumHM1070 as well as three different pairs of clinical isolates (pre- and postexposure to Q-D) were studied. The full genome sequence of anin vitromutant (E. faeciumUCN90B) was determined by using 454 sequencing technology and was compared with that of the parental strain. Single-nucleotide replacement was carried out to confirm the role of this mutation. By comparative genomic analysis, a point mutation was found within a 1,503-bp gene coding for an ABC homologue showing 66% amino acid identity with Lsa(A). This mutation (C1349T) led to an amino acid substitution (Thr450Ile). An identical mutation was identified in allin vitroandin vivoresistant strains but was not present in susceptible strains. The wild-type allele was namedeat(A) (forEnterococcusABCtransporter), and its mutated allelic variant was namedeat(A)v. The introduction ofeat(A)vfrom UCN90B into HM1070 conferred the LSAP phenotype, whereas that ofeat(A) from HM1070 into UCN90B restored susceptibility entirely. This is the first description of the molecular mechanism of acquired LSAP resistance inE. faecium. Characterization of the biochemical mechanism of resistance and the physiological role of this ABC protein need further investigations.


Author(s):  
Yangyang Liu ◽  
Yonglu Li ◽  
Wen Chen ◽  
Xiang Ye ◽  
Ruoyi Jia ◽  
...  

Abstract: Tetrastigma hemsleyanum has been regarded as an anticancer food in China. However, its corresponding mechanisms remains unclear. Thus, in this study, the antitumor activity of flavones-rich fraction of root of Tetrastigma hemsleyanum (FRTH) was investigated in vitro and in vivo. The results indicated that FRTH could inhibit the proliferation and migration of HepG2 cells in vitro by PI3K/AKT pathway. FRTH could increase the ROS level and change the mitochondrial membrane potential (MMP) in HepG2 cells. In addition, FRTH treatment (300, 600 mg/kg BW) significantly suppressed tumor growth on HepG2 tumor-bearing nude mice. Besides, immunohistochemistry assays and western blotting revealed that FRTH enhanced the expression level of Bax/Bcl-2, cytochrome C, Caspase-3, caspase-9, Cleaved-caspase-3, and downregulated the expression level of CD31, ki67 and VEGF in HepG2 tumor-bearing mice. Our study suggests Tetrastigma hemsleyanum as a promising candidate medicine for liver cancer treatment.


2021 ◽  
Author(s):  
Li Zhang ◽  
Chunxian Huang ◽  
Tsz-Lun Yeung ◽  
Sammy Ferri-Borgogno ◽  
Chilam AuYeung ◽  
...  

Abstract Background Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker RYR1 identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of ryanodine receptor 1 (RYR1) in the tumors is associated with shortened overall survival. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through the Ca2+-dependent AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression in both in vitro and mouse models. Conclusions These findings provide insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Partha Mukhopadhyay ◽  
Mohanraj Rajesh ◽  
Sandor Bátkai ◽  
György Haskó ◽  
Csaba Szabo ◽  
...  

Although doxorubicin (DOX) is one of the most potent antitumor agents available, its clinical use is limited because of the risk of severe cardiotoxicity often leading to irreversible congestive heart failure. Apoptotic cell death is a key component in DOX-induced cardiotoxicity, but its trigger(s) and mechanisms are poorly understood. Here, we explore the role of peroxynitrite (a reactive oxidant produced from the diffusion-controlled reaction between nitric oxide and superoxide anion) in DOX-induced cell death. Using a well-established in vivo mouse model of DOX-induced acute heart failure, we demonstrate marked increases in myocardial apoptosis (caspase-3 and 9 gene expression, caspase 3 activity, cytochrome-c release, and TUNEL), iNOS but not eNOS and nNOS expression, 3-nitrotyrosine formation and a decrease in myocardial contractility following DOX treatment. Pre-treatment of mice with peroxynitrite scavengers markedly attenuated DOX-induced myocardial cell death and dysfunction without affecting iNOS expression. DOX induced increased superoxide generation and nitrotyrosine formation in the mitochondria, dissipation of mitochondrial membrane potential, apoptosis (cytochrome-C release, annexin V staining, caspase activation, nuclear fragmentation), and disruption of actin cytoskeleton structure in cardiac-derived H9c2 cells. Selective iNOS inhibitors attenuated DOX-induced apoptosis, without affecting increased mitochondrial superoxide generation, whereas NO donors increased DOX-induced cell death in vitro . The peroxynitrite scavengers FeTMPyP and MnTMPyP markedly reduced both DOX- or peroxynitrite-induced nitrotyrosine formation and cell death in vitro , without affecting DOX-induced increased mitochondrial superoxide formation. Thus, peroxynitrite is a major trigger of DOX-induced apoptosis, and its effective neutralization can be of significant therapeutic benefit.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bikang Yang ◽  
Jing Chen ◽  
Yincheng Teng

Cervical cancer (CC) is a commonly diagnosed and primary consideration of cancer patient death in female reproductive system malignancy. Cyclin-dependent kinase 12 (CDK12), as a transcription-associated CDK, plays important roles in tumor-promoting behaviors, whereas the underlying mechanisms of CDK12 in CC progression are still obscure. In this report, we investigated the role of CDK12 in cervical cancer. The current study identified CDK12 mRNA and protein expression remarkably upregulated in CC patients. Upregulated CDK12 was closely associated with CC progression and poor prognosis. In vitro and in vivo functional experiments showed that knockdown of CDK12 inhibited cancer cell proliferation and colony formation and promoted apoptosis. Further investigations demonstrated that CDK12 regulated the immune microenvironment to facilitate the progression of CC cells by promoting macrophage infiltration. Meanwhile, we first demonstrated that nuclear import of CDK12 is mediated by TNPO1 and might be a new therapeutic target in oncology. Collectively, this study pointed out the potential of CDK12 to serve as a novel therapeutic target in restricting CC proliferation and cell cycle process through promoting macrophage infiltration.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1516-1516
Author(s):  
Wenjing Lang ◽  
Fangyuan Chen ◽  
Linyun Zhou

Abstract Background: High expression of the ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukaemia patients. Zebrafish (Danio rerio) is a vertebrate animal model commonly used to examine haematopoiesis and myeloid malignancies. To clarify the molecular mechanisms of EVI-1, we previously introduced the human EVI-1 gene into embryonic zebrafish through a heat-shock promoter and established the stable germ-line Tg(EVI-1: HSE: EGFP) zebrafish (Shen et al, 2013). Arsenic trioxide (As2O3, ATO) is one of the effective anticancer drugs, especially for patients with leukaemia (Udupa et al, 2017). We thus aimed to explore the anticancer effects of ATO and the underlying functions associated with EVI-1 in an in vivo zebrafish model and in AML cells in vitro. Results: We determined EVI-1 expression in mononuclear cells isolated from the bone marrow and peripheral blood of AML patients and healthy donors by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in primary AML (Fig 1A). Then, EVI-1 expression was detected in five leukaemia cell lines (K562, HL-60, U937, THP-1 and MV4-11) and normal PBMCs. Among these five leukaemia cell lines, THP-1 has the highest EVI-1 expression (Fig 1B and Fig1C). Primary acute monocytic leukaemia cells from one patient with high expression of EVI-1 were treated with ATO. We found ATO could significantly decrease EVI-1 mRNA (Fig 2A). Between the ATO-treated groups and the control group, the expression of EVI-1 were significantly reduced in the THP-1 cell line (Fig 2B). Next, we evaluated the EVI-1 expression in Tg(EVI-1: HSE; EGFP) transgenic zebrafish embryos over dose courses of ATO exposure (Fig 2C). Consistent with the results of our in vitro study, ATO decreased EVI-1 expression in a dose-dependent manner after 72 h (Fig 2C). Taken together, these results indicate that ATO is an inhibitor of EVI-1 expression both in vivo and in vitro. We investigate whether the reduction of THP-1 cells viability is due to apoptosis, THP-1 cells were incubated with 3 µM of ATO for 24 h, 48 h or 72 h. In the light microscopy images, THP-1 cells exhibited typical apoptotic characteristics (Fig 3A). The proportion of apoptotic cells was represented as early apoptotic cells (annexin V+/PI- staining, the lower right quadrant) plus late apoptotic cells (annexin V+/PI+ staining, the upper right quadrant) (Fig 3B). In cytometric analysis, ATO increased the percentage of apoptotic THP-1 cells in a dose- and time-dependent manner. We found that ATO increased the expressions of JNK, p-JNK, p-P53, PUMA, Bax, caspase-9 and caspase-3 (including cleaved caspase-9 and -3) but decreased the expressions of Bcl-2 and Bcl-xl (Fig 3C). To further verify the role of the JNK pathway in ATO-mediated THP-1 cell apoptosis, we examined if the inhibitor of JNK (SP600125) could reverse ATO-induced apoptosis in THP-1 cells. We found SP600125 not only decreased the pro-apoptotic effect of ATO in the THP-1 cell line (Fig 4A and Fig 4B) but also decreased the activation of the JNK-mediated apoptotic signalling pathway (Fig 4C). SP600125 silenced the activation of JNK by completely inhibiting the phosphorylation of JNK but had little effect on EVI-1 expression (Fig 4C). To test whether EVI-1 modulates apoptosis via the JNK signalling pathway, we transiently transfected THP-1 cells with EVI-1 siRNA which significantly reduced EVI-1 expression (Fig 5A). Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of THP-1 cell apoptosis (Fig 5B and Fig 5C). Conclusion: Our study demonstrated that the apoptotic pathway in THP-1 cells induced by ATO is closely associated with the oncogene EVI-1, the pro-apoptotic protein JNK, p-JNK, p-P53, PUMA, Bax, caspase-9 and caspase-3 (including cleaved caspase-9 and cleaved caspase-3), and the anti-apoptotic proteins Bcl-2 and Bcl-xL. ATO can downregulate EVI-1 mRNA and oncoprotein and block the repression of EVI-1 in the JNK pathway. Furthermore, the activated JNK signalling pathway regulated the expression level of apoptosis-associated proteins, including p-P53, PUMA, Bax, Bcl‐xL, Bcl‐2, Bax, caspase-9 and caspase-3(Fig 6). These findings may provide a novel theoretical basis for the development of personalized medical strategies for the treatment of EVI-1 positive AML patients. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 9 (4) ◽  
pp. 431-443
Author(s):  
Chien-Hsun Huang ◽  
Fu-Ting Wang ◽  
Wen-Hsiung Chan

Abstract Previous studies have shown that berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, suppresses growth and induces apoptosis in some tumor cell lines. It has also been shown that berberine possesses anti-atherosclerosis and antioxidant activities in hyperlipidemic model rats. Our previous study in mice found that berberine causes harmful effects on preimplantation and postimplantation embryonic development, both in vitro and in vivo, by triggering reactive oxygen species (ROS)-mediated apoptotic cascades in mouse blastocysts. In the current investigation, we further showed that berberine treatment has distinct dose-dependent effects on oocyte maturation and subsequent development. Preincubation of oocytes with 2.5 μM berberine significantly enhanced maturation and in vitro fertilization (IVF) rates, with subsequent beneficial effects on embryonic development. In contrast, preincubation with 10 μM berberine negatively impacted mouse oocyte maturation, decreased IVF rates and impaired subsequent embryonic development. Similar dose-dependent effects were also demonstrated in vivo. Specifically, intravenous injection of berberine significantly enhanced mouse oocyte maturation, IVF rate and early-stage embryo development after fertilization at a dose of 1 mg/kg body weight but significantly impaired oocyte maturation and IVF rates and caused harmful effects on early embryonic development at a dose of 5 mg/kg. Mechanistically, we found that berberine enhanced intracellular ROS production and apoptosis of oocytes at a concentration of 10 μM but actually significantly decreased total intracellular ROS content and had no apoptotic effect at a concentration of 2.5 μM. Moreover, pretreatment of oocytes with Ac-DEVD-cho, a caspase-3–specific inhibitor, effectively blocked berberine-induced negative impacts on oocyte maturation, fertilization and subsequent development. Collectively, these findings establish the dose-dependent beneficial versus deleterious effects of berberine and suggest that the mechanism underlying the deleterious effects of berberine involves a caspase-3–dependent apoptotic process acting downstream of an increase in intracellular ROS levels.


Sign in / Sign up

Export Citation Format

Share Document