scholarly journals A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ines Urquiaga ◽  
Felipe Ávila ◽  
Guadalupe Echeverria ◽  
Druso Perez ◽  
Sebastian Trejo ◽  
...  

This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N=11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p<0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p<0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.

2011 ◽  
Vol 21 (4) ◽  
pp. 328-337 ◽  
Author(s):  
Steven R. McAnulty ◽  
David C. Nieman ◽  
Lisa S. McAnulty ◽  
Worley S. Lynch ◽  
Fuxia Jin ◽  
...  

Consumption of plant flavonoids, antioxidants, and n-3 fatty acids is proposed to have many potential health benefits derived primarily through antioxidant and anti-inflammatory activities. This study examined the effects of 1,000 mg quercetin + 1,000 mg vitamin C (QC); 1,000 mg quercetin, 1,000 mg vitamin C, 400 mg isoquercetin, 30 mg epigallocatechin gallate, and 400 mg n-3 fatty acids (QFO); or placebo (P), taken each day for 2 wk before and during 3 d of cycling at 57% Wmax for 3 hr, on plasma antioxidant capacity (ferricreducing ability of plasma [FRAP], oxygen-radical absorbance capacity [ORAC]), plasma oxidative stress (F2-isoprostanes), and plasma quercetin and vitamin C levels. Thirty-nine athletes were recruited and randomized to QC, QFO, or P. Blood was collected at baseline, after 2 wk supplementation, immediately postexercise, and 14 hr postexercise. Statistical design used a 3 (groups) × 4 (times) repeated-measures ANOVA with post hoc analyses. Plasma quercetin was significantly elevated in QC and QFO compared with P. Plasma F2-isoprostanes, FRAP, and vitamin C were significantly elevated and ORAC significantly decreased immediately postexercise, but no difference was noted in the overall pattern of change. Post hoc analyses revealed that the QC and QFO groups did not exhibit a significant increase in F2-isoprostanes from baseline to immediately postexercise compared with P. This study indicates that combining flavonoids and antioxidants with n-3 fatty acids is effective in reducing the immediate postexercise increase in F2-isoprostanes. Moreover, this effect occurs independently of changes in plasma antioxidant capacity.


2003 ◽  
Vol 105 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Maarten T. M. RAIJMAKERS ◽  
Geurt W. SCHILDERS ◽  
Eva Maria ROES ◽  
Lambertus J. H. VAN TITS ◽  
Heidy L. M. HAK-LEMMERS ◽  
...  

Methionine loading seems to be accompanied by increased oxidative stress and damage. However, it is not known how this oxidative stress is generated. We performed the present crossover study to further elucidate the effects of methionine loading on oxidative stress in the blood of healthy volunteers, and to examine possible preventative effects of N-acetylcysteine (NAC) administration. A total of 18 healthy subjects were given two oral methionine loads of 100 mg/kg body weight, 4 weeks apart, one without NAC (Met group), and one in combination with supplementation with 2×900 mg doses of NAC (Met+NAC group). Blood samples were collected before and 2, 4, 8 and 24 h after methionine loading for measurements of thiol levels, protein carbonyls, lipid peroxidation, cellular fibronectin and ferric reducing ability of plasma (FRAP; i.e. antioxidant capacity). After methionine loading, whole-blood levels of free and oxidized cysteine and homocysteine were increased in both groups. Furthermore, the total plasma levels of homocysteine were higher, whereas those of cysteine were lower, after methionine loading in both groups. Lower levels of oxidized homocysteine and a higher free/oxidized ratio were found in the Met+NAC group compared with the Met group. Although the antioxidant capacity decreased after methionine loading, no major changes over time were found for protein carbonyls or cellular fibronectin in either group. Our results suggest that methionine loading may initiate the generation of reactive oxygen species by the (auto)-oxidation of homocysteine. In addition, supplementation with NAC seems to be able to partially prevent excessive increases in the levels of homocysteine in plasma and of oxidized homocysteine in whole blood, and might thereby contribute to the prevention of oxidative stress.


2008 ◽  
Vol 18 (6) ◽  
pp. 601-616 ◽  
Author(s):  
John C. Quindry ◽  
Steven R. McAnulty ◽  
Matthew B. Hudson ◽  
Peter Hosick ◽  
Charles Dumke ◽  
...  

Previous research indicates that ultramarathon exercise can result in blood oxidative stress. The purpose of this investigation was to examine the efficacy of oral supplementation with quercetin, a naturally occurring compound with known antioxidant properties, as a potential countermeasure against blood oxidative stress during an ultramarathon competition. In double-blind fashion, 63 participants received either oral quercetin (250 mg, 4×/day; 1,000 mg/day total) or quercetin-free supplements 3 weeks before and during the 160-km Western States Endurance Run. Blood drawn before and immediately after (quercetin finishers n = 18, quercetin-free finishers n = 21) the event was analyzed for changes in blood redox status and oxidative damage. Results show that quercetin supplementation did not affect race performance. In response to the ultramarathon challenge, aqueous-phase antioxidant capacity (ferric-reducing ability of plasma) was similarly elevated in athletes in both quercetin and quercetin-free treatments and likely reflects significant increases in plasma urate levels. Alternatively, trolox-equivalent antioxidant capacity was not altered by exercise or quercetin. Accordingly, neither F2-isoprostances nor protein carbonyls were influenced by either exercise or quercetin supplementation. In the absence of postrace blood oxidative damage, these findings suggest that oral quercetin supplementation does not alter blood plasma lipid or aqueous-phase antioxidant capacity or oxidative damage during an ultramarathon challenge.


2007 ◽  
Vol 99 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Karin Jacob ◽  
María J. Periago ◽  
Volker Böhm ◽  
Gaspar Ros Berruezo

A human study was carried out to investigate whether tomato juice, rich in natural lycopene and fortified with vitamin C, is able to reduce several biomarkers of oxidative stress and inflammation and whether the effect can be attributed to lycopene, vitamin C or any other micronutrient. Following a 2-week depletion phase, volunteers were assigned randomly to ingest either tomato juice with (LC) or without (L) vitamin C fortification for 2 weeks (daily dose 20·6 mg lycopene and 45·5/435 mg vitamin C). Plasma and urine were analysed for carotenoids and vitamin C, lipid status, antioxidant capacity, thiobarbituric acid reactive substances (TBARS) and 8-epi-PGF2α, protein carbonyls, cytokines IL-1β and TNFα and C-reactive protein (CRP). The consumption of tomato juice led to a reduction in total cholesterol levels (L: 157·6v. 153·2 mg/dl,P = 0·008; LC: 153·4v. 147·4 mg/dl,P = 0·002) and that of CRP (L: 315·6v. 262·3 μg/l,P = 0·017; LC: 319·2v. 247·1 μg/l,P = 0·001) in both groups. The vitamin C-fortified juice slightly raised the antioxidant capacity in urine and decreased TBARS in plasma and urine. All other markers were affected to a lesser extent or remained unchanged. Cholesterol reduction was correlated with lycopene uptake (P = 0·003), whereas the other effects could not be related with particular micronutrients. Any beneficial effects of tomato consumption for human health cannot be attributed only to lycopene and, as the additional supplementation with ascorbic acid indicates, a variety of antioxidants might be needed to optimize protection against chronic diseases.


Author(s):  
Błażej Stankiewicz ◽  
Mirosława Cieślicka ◽  
Sławomir Kujawski ◽  
Elżbieta Piskorska ◽  
Tomasz Kowalik ◽  
...  

Abstract Background Intensive physical exercise that competitive sports athletes participate in can negatively affect their pro-oxidative–antioxidant balance. Compounds with high antioxidant potential, such as those present in chokeberry (Aronia melanocarpa), can prevent these adverse changes. We here investigated the effect of antioxidant supplementation on oxidative stress balance in young footballers. Methods The study was designed as a double-blind randomized trial. Diet of a group of young football players (male; n = 20; mean age, 15.8 years-old) was supplemented with 200 ml of chokeberry juice per day, for 7 weeks. The players were randomly assigned to the experimental (supplemented, FP-S; n = 12) and control (placebo, FB-C; n = 8) groups. Before and after the supplementation period, the participants performed a beep test. Venous blood was sampled for serum analysis before, immediately after, 3 h, and 24 h after the beep test. Serum levels of thiobarbituric acid reactive products, 8-hydroxy-2′-deoxyguanosine, total antioxidant capacity, iron, hepcidin, ferritin, myoglobin, and albumin, and morphological blood parameters (red blood cells, (RBC), haemoglobin (HGB), haematocrit (HCT) mean corpuscular volume (MCV) mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), and lactic acid) were determined. Results Chokeberry juice supplementation did not significantly affect the outcome of the beep test. The supplementation did not significantly affect any of the morphological, biochemical, or performance parameters analysed. Conclusions Chokeberry juice supplementation did not affect the measured parameters in the studied population, which may indicate insufficient antioxidant capacity of the juice.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Krzysztof Gwozdzinski ◽  
Anna Pieniazek ◽  
Joanna Brzeszczynska ◽  
Sabina Tabaczar ◽  
Anna Jegier

The aim of this study was to investigate alterations in haemoglobin conformation and parameters related to oxidative stress in whole erythrocytes, membranes, and plasma after a single bout of exercise in a group of young untrained men. Venous blood samples from eleven healthy young untrained males (age = 22 ± 2 years, BMI = 23 ± 2.5 kg/m2) were taken from the antecubital vein before an incremental cycling exercise test, immediately after exercise, and 1 hour after exercise. Individual heart rate response to this exercise was 195 ± 12 beats/min and the maximum wattage was 292 ± 27 W. Immediately after exercise, significant increase in standard parameters (haemoglobin, haematocrit, lactate levels, and plasma volume) of blood was observed as well as plasma antioxidant capacity one hour after exercise. Reversible conformational changes in haemoglobin, measured using a maleimide spin label, were found immediately following exercise. The concentration of ascorbic acid inside erythrocytes significantly decreased after exercise. A significant decline in membrane thiols was observed one hour after exercise, but simultaneously an increase in plasma thiols immediately after and 1 h after exercise was also observed. This study shows that a single bout of exercise can lead to mobilization of defensive antioxidant systems in blood against oxidative stress in young untrained men.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakub Kaźmierski ◽  
Piotr Miler ◽  
Agnieszka Pawlak ◽  
Hanna Jerczyńska ◽  
Joanna Woźniak ◽  
...  

AbstractCoronary-artery bypass graft (CABG) surgery is known to improve cardiac function and decrease mortality, albeit, this method of treatment is also associated with a neuropsychiatric complications including postoperative delirium. The pathophysiology of delirium after cardiac surgery remains poorly understood. Thus, the purpose of this study was to investigate whether oxidative stress reflected by decreased preoperative and postoperative plasma antioxidant activity is independently associated with delirium after cardiac surgery. The second aim was to assess whether decreased antioxidant activity is stress-related or mediated by other pathologies such as major depressive disorder (MDD), anxiety disorders, and cognitive impairment. Furthermore, the putative relationship between pre- and postoperative soluble receptor for advanced glycation end-products (sRAGE) overexpression and plasma antioxidant capacity was evaluated. The patients cognitive status was assessed 1 day preoperatively with the use of the Mini-Mental State Examination Test and the Clock Drawing Test. A diagnosis of MDD and anxiety disorders was established on the basis of DSM-5 criteria. Blood samples for antioxidant capacity and sRAGE levels were collected both preoperatively and postoperatively. The Confusion Assessment Method for the Intensive Care Unit was used within the first 5 days postoperatively to screen for a diagnosis of delirium. Postoperative delirium was diagnosed in 34% (61 of 177) of individuals. Multivariate logistic regression analysis revealed that low baseline antioxidant capacity was independently associated with postoperative delirium development. Moreover, increased risk of delirium was observed among patients with a preoperative diagnosis of MDD associated with antioxidant capacity decreased postoperatively. According to receiver operating characteristic analysis, the most optimal cutoff values of the preoperative and postoperative antioxidant capacity that predict the development of delirium were 1.72 mM and 1.89 mM, respectively. Pre- and postoperative antioxidant capacity levels were negatively correlated with postoperative sRAGE concentration (Spearman's Rank Correlation − 0.198 and − 0.158, p < 0.05, respectively). Patients with decreased preoperative antioxidant activity and those with depressive episodes complicated with lower postoperative antioxidant activity are at significantly higher risk of delirium after cardiac surgery development. sRAGE overexpression may be considered as protective mechanism against increased oxidative stress and subsequent cell damage.


2018 ◽  
Vol 17 (2) ◽  
pp. 503-510 ◽  
Author(s):  
Chris P. Repka ◽  
Reid Hayward

Background: Although the underlying mechanisms of cancer-related fatigue (CRF) are not fully characterized, treatment-associated oxidative stress may play a role. The purpose of this study was to determine the effect of an exercise intervention on the relationship between CRF and oxidative stress. Methods: Upon cessation of radiation or chemotherapy, 8 cancer patients participated in a 10-week exercise intervention (EX), while 7 continued standard care (CON). Blood draws and fatigue questionnaires were administered to cancer patients before and after the intervention as well as to 7 age-matched individuals with no cancer history. Changes in plasma 8-hydroxy-deoxyguanosine (8-OHdG), protein carbonyls, antioxidant capacity, and fatigue were compared between groups. Correlations between CRF and oxidative stress were evaluated. Results: Mean total fatigue scores decreased significantly (5.0 ± 2.2 to 2.6 ± 1.5, P < .05) in EX, but not in CON. Antioxidant capacity significantly increased (+41%; P < .05) and protein carbonyls significantly decreased (−36%; P < .05) in EX, but not in CON. Increases in antioxidant capacity were significantly correlated with reductions in affective ( r = −.49), sensory ( r = −.47), and cognitive fatigue ( r = −.58). Changes in total ( r = .46) and affective ( r = .47) fatigue exhibited significant correlations with changes in 8-OHdG over time, while behavioral ( r = .46) and sensory ( r = .47) fatigue changes were significantly correlated with protein carbonyls. Conclusions: Oxidative stress may be implicated in CRF, while improved antioxidant capacity following an exercise intervention may play a role in mitigating CRF in cancer survivors.


Sign in / Sign up

Export Citation Format

Share Document