scholarly journals Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jose Luis Morgado-Pascual ◽  
Vanessa Marchant ◽  
Raul Rodrigues-Diez ◽  
Nuria Dolade ◽  
Beatriz Suarez-Alvarez ◽  
...  

The growing incidence of obesity, hypertension, and diabetes, coupled with the aging of the population, is increasing the prevalence of renal diseases in our society. Chronic kidney disease (CKD) is characterized by persistent inflammation, fibrosis, and loss of renal function leading to end-stage renal disease. Nowadays, CKD treatment has limited effectiveness underscoring the importance of the development of innovative therapeutic options. Recent studies have identified how epigenetic modifications participate in the susceptibility to CKD and have explained how the environment interacts with the renal cell epigenome to contribute to renal damage. Epigenetic mechanisms regulate critical processes involved in gene regulation and downstream cellular responses. The most relevant epigenetic modifications that play a critical role in renal damage include DNA methylation, histone modifications, and changes in miRNA levels. Importantly, these epigenetic modifications are reversible and, therefore, a source of potential therapeutic targets. Here, we will explain how epigenetic mechanisms may regulate essential processes involved in renal pathology and highlight some possible epigenetic therapeutic strategies for CKD treatment.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Xuanli Tang ◽  
Feng Wan ◽  
Jin Yu ◽  
Xiaohong Li ◽  
Ruchun Yang ◽  
...  

Abstract Background This study aimed to analyze the clinicopathological characteristics of patients with paraproteinemia and renal damage. Methods Ninety-six patients from 2014 to 2018 with paraproteinemia and renal damage were enrolled and the clinical data, renal pathology, treatment and prognosis data were collected. Results A total of 96 patients (54 male and 42 female), accounting for 2.7% of all renal biopsies, were enrolled in this study. Among them, 42 were monoclonal gammopathy of renal significance (MGRS), 21 were renal monotypic immunoglobulin alone (renal monoIg), and 19 were monoclonal gammopathy of undetermined significance (MGUS). Individuals with multiple myeloma (MM) accounted for the fewest number of patients (n  =  14). In the MGRS group, the main diseases were amyloidosis (n  =  25) and cryoglobulinemic glomerulonephritis (n  =  7), while in the MM group, the main diseases were cast nephropathy (n  =  9) and light chain deposit disease (n  =  3). In the MGUS group, it was mainly IgA nephropathy (IgAN, n  =  10) and idiopathic membranous nephropathy (n  =  5); while in the renal monoIg group, most of the cases were IgAN (n  =  19). Chemotherapy was mainly administered to patients in the MM group, while immunosuppression therapy was mostly administered to patients in the renal monoIg group. Most patients with renal monoIg exhibited a major response, followed by the patients with MGUS and MGRS, while most of the patients with MM had a partial response but none had a major response. Approximately more than half (57.1%) of the patients with MM progressed to end-stage renal disease (ESRD), followed by MGRS (33.3%); however, the mortality rate was low in both the MGRS and MM groups. The survival analysis reviewed that serum creatinine, hemoglobin levels, and the serum κ/λ ratio were independent risk factors for ESRD in patients with MGRS. Conclusions The clinicopathological changes in patients with MGRS were between those in patients with MM and MGUS. The treatment for MGRS and MM was more intensive, and the overall mortality rate was low. Both MGUS and renal monoIg alone exhibited slighter clinicopathological features than MGRS and MM, and the treatment was focused mostly on primary renal diseases.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenchang Lv ◽  
Yuping Ren ◽  
Kai Hou ◽  
Weijie Hu ◽  
Yi Yi ◽  
...  

AbstractKeloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.


2020 ◽  
Vol 2 (1) ◽  
pp. R17-R34
Author(s):  
Malik Bisserier ◽  
Radoslav Janostiak ◽  
Frank Lezoualc’h ◽  
Lahouaria Hadri

Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.


2021 ◽  
Vol 10 (10) ◽  
pp. 2046
Author(s):  
Goren Saenz-Pipaon ◽  
Saioa Echeverria ◽  
Josune Orbe ◽  
Carmen Roncal

Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yue Huang ◽  
Yuantao Xu ◽  
Xiaolin Jiang ◽  
Huiwen Yu ◽  
Huihui Jia ◽  
...  

AbstractGrafting is an ancient technique used for plant propagation and improvement in horticultural crops for at least 1,500 years. Citrus plants, with a seed-to-seed cycle of 5–15 years, are among the fruit crops that were probably domesticated by grafting. Poncirus trifoliata, a widely used citrus rootstock, can promote early flowering, strengthen stress tolerance, and improve fruit quality via scion–rootstock interactions. Here, we report its genome assembly using PacBio sequencing. We obtained a final genome of 303 Mb with a contig N50 size of 1.17 Mb and annotated 25,680 protein-coding genes. DNA methylome and transcriptome analyses indicated that the strong adaptability of P. trifoliata is likely attributable to its special epigenetic modification and expression pattern of resistance-related genes. Heterografting by using sweet orange as scion and P. trifoliata as rootstock and autografting using sweet orange as both scion and rootstock were performed to investigate the genetic effects of the rootstock. Single-base methylome analysis indicated that P. trifoliata as a rootstock caused DNA demethylation and a reduction in 24-nt small RNAs (sRNAs) in scions compared to the level observed with autografting, implying the involvement of sRNA-mediated graft-transmissible epigenetic modifications in citrus grafting. Taken together, the assembled genome for the citrus rootstock and the analysis of graft-induced epigenetic modifications provide global insights into the genetic effects of rootstock–scion interactions and grafting biology.


Author(s):  
Johannes Philipp Kläger ◽  
Ahmad Al-Taleb ◽  
Mladen Pavlovic ◽  
Andrea Haitel ◽  
Eva Comperat ◽  
...  

Abstract Background Nephrectomy is the management of choice for the treatment of renal tumors. Surgical pathologists primarily focus on tumor diagnosis and investigations relating to prognosis or therapy. Pathological changes in non-neoplastic tissue may, however, be relevant for further management and should be thoroughly assessed. Methods Here, we examined the non-neoplastic renal parenchyma in 206 tumor nephrectomy specimens for the presence of glomerular, tubulo-interstitial, or vascular lesions, and correlated them with clinical parameters and outcome of renal function. Results We analyzed 188 malignant and 18 benign or pseudo-tumorous lesions. The most common tumor type was clear cell renal cell carcinoma (CCRCC, n = 106) followed by papillary or urothelial carcinomas (n = 25). Renal pathology examination revealed the presence of kidney disease in 39 cases (18.9%). Glomerulonephritis was found in 15 cases (7.3%), and the most frequent was IgA nephropathy (n = 6; 2.9%). Vasculitis was found in two cases (0.9%). In 15 cases we found tubulo-interstitial nephritis, and in 9 severe diabetic or hypertensive nephropathy. Partial nephrectomy was not linked to better eGFR at follow-up. Age, vascular nephropathy, glomerular scarring and interstitial fibrosis were the leading independent negative factors influencing eGFR at time of surgery, whereas proteinuria was associated with reduced eGFR at 1 year. Conclusion Our large study population indicates a high incidence of renal diseases potentially relevant for the postoperative management of patients with renal neoplasia. Consistent and systematic reporting of non-neoplastic renal pathology in tumor nephrectomy specimens should therefore be mandatory.


2021 ◽  
Vol 22 (7) ◽  
pp. 3762
Author(s):  
Sarah M. Kedziora ◽  
Kristin Kräker ◽  
Lajos Markó ◽  
Julia Binder ◽  
Meryam Sugulle ◽  
...  

Preeclampsia (PE) is characterized by the onset of hypertension (≥140/90 mmHg) and presence of proteinuria (>300 mg/L/24 h urine) or other maternal organ dysfunctions. During human PE, renal injuries have been observed. Some studies suggest that women with PE diagnosis have an increased risk to develop renal diseases later in life. However, in human studies PE as a single cause of this development cannot be investigated. Here, we aimed to investigate the effect of PE on postpartum renal damage in an established transgenic PE rat model. Female rats harboring the human-angiotensinogen gene develop a preeclamptic phenotype after mating with male rats harboring the human-renin gene, but are normotensive before and after pregnancy. During pregnancy PE rats developed mild tubular and glomerular changes assessed by histologic analysis, increased gene expression of renal damage markers such as kidney injury marker 1 and connective-tissue growth factor, and albuminuria compared to female wild-type rats (WT). However, four weeks postpartum, most PE-related renal pathologies were absent, including albuminuria and elevated biomarker expression. Only mild enlargement of the glomerular tuft could be detected. Overall, the glomerular and tubular function were affected during pregnancy in the transgenic PE rat. However, almost all these pathologies observed during PE recovered postpartum.


2021 ◽  
Author(s):  
Linchong Sun ◽  
Huafeng Zhang ◽  
Ping Gao

AbstractMetabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


Sign in / Sign up

Export Citation Format

Share Document