scholarly journals Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Vedran Mrzljak ◽  
Tomislav Senčić ◽  
Božica Žarković

Developed power variation of turbogenerator (TG) steam turbine, which operates at the conventional LNG carrier, allows insight into the change in turbine exergy efficiency and exergy destruction during the increase in turbine power. Measurements of required operating parameters were performed in eight different TG steam turbine operating points during exploitation. Turbine exergy efficiency increases from turbine power of 500 kW up to 2700 kW, and maximum exergy efficiency was obtained at 70.13% of maximum turbine developed power (at 2700 kW) in each operating point. From turbine developed power of 2700 kW until the maximum power of 3850 kW, exergy efficiency decreases. Obtained change in TG turbine exergy efficiency is caused by an uneven intensity of increase in turbine developed power and steam mass flow through the turbine. TG steam turbine exergy destruction change is directly proportional to turbine load and to steam mass flow through the turbine—higher steam mass flow results in a higher turbine load which leads to the higher exergy destruction and vice versa. The higher share of turbine developed power and the lower share of turbine exergy destruction in the TG turbine exergy power inlet lead to higher turbine exergy efficiencies. At each observed operating point, turbine exergy efficiency in exploitation is lower when compared to the maximum obtained one for 8.39% to 12.03%.

Author(s):  
Vahid Madadi ◽  
Touraj Tavakoli ◽  
Amir Rahimi

AbstractThe energy and exergy performance of a parabolic dish collector is investigated experimentally and theoretically. The effect of receiver type, inlet temperature and mass flow rate of heat transfer fluid (HTF), receiver temperature, receiver aspect ratio and solar radiation are investigated. To evaluate the effect of the receiver aperture area on the system performance, three aperture diameters are considered. It is deduced that the fully opened receivers have the greatest exergy and thermal efficiency. The cylindrical receiver has greater energy and exergy efficiency than the conical one due to less exergy destruction. It is found that the highest exergy destruction is due to heat transfer between the sun and the receivers and counts for 35 % to 60 % of the total wasted exergy. For three selected receiver aperture diameters, the exergy efficiency is minimum for a specified HTF mass flow rate. High solar radiation allows the system to work at higher HTF inlet temperatures. To use this system in applications that need high temperatures, in cylindrical and conical receivers, the HTF mass flow rates lower than 0.05 and 0.09 kg/s are suggested, respectively. For applications that need higher amounts of energy content, higher HTF mass flow rates than the above mentioned values are recommended.


Author(s):  
Kaviya Swaminathan ◽  
Chetan S. Mistry

Abstract Turbojet and turbofan engine propulsion system are extensively used in aircraft. Turbojets have simple engine design and extensively used for supersonic flights. Turbofan engine has high mass flow rate and efficient for subsonic application. Variable Cycle Engines, unlike the traditional engines, can vary between high thrust mode for supersonic operations and high efficiency mode for subsonic operations hence are potentially attractive for supersonic transport and advanced tactical fighter aircraft. Variable Cycle Engine can be described as the one that operates with two or more cycles, could serve as a possible solution to reconciling the necessary performance at different operating conditions. The aim of the engine is to combine the best traits of turbojet (high specific thrust) and turbofan (low specific fuel consumption, low noise). Traditional engines have fixed mass flow but VCE can alter the mass flow and function as high bypass engine for the subsonic case and low bypass engine at the supersonic case. Different variable cycle engine design philosophies were studied and the engine architecture used in F120 was incorporated into the base design of a low bypass ratio Turbofan Engine. Cycle analysis of VCE was primarily done based on theoretical calculation and parametric study performed with the use of Gasturb software. Two Variable Area Bypass Injectors (VABI) were used to vary the mass flow through the core and the bypass stream. We aspire to achieve enhanced performance at subsonic and supersonic mission segments. Subsonic, supersonic and take off conditions were decided and the base engine was modified to have multiple operating points. The VCE combines two cycles (subsonic, supersonic) in same engine body and it is crucial for the engine components to deliver the required performance at both the design points. The engine design procedure consists of the matching of components like turbine, compressor, exhaust nozzle and the exhaust mixing area. Systematic study of turbine matching for such engine configuration with multiple operating points was carried out to understand the utility of variable geometry in a VCE. For turbine matching, the mass flow through turbine was held constant by adjusting the VABIs and this was repeated for different takeoff conditions to analyses the output in detail. The non dimensional mass flow through the turbine was fixed for both the design points and hence the turbine could be designed to provide high efficiency. The fuel consumption was found to have decreased compared to the baseline condition which in turn leads to low SFC and higher endurance.


Author(s):  
Vasileios E. Kyritsis ◽  
Pericles Pilidis

Frequently, the mechanical integrity of gas turbine components is designed for a hot day, sea level take-off, where the maximum values are encountered for critical temperatures, such as the ones at the compressor and combustor outlet and the turbine rotor inlet stations. Turbine cooling flow rates are then defined taking into consideration maximum allowable metal temperatures, stresses, component life expectancy and heat transfer technology. Remaining unchanged as a percent of the core engine mass flow through the rest of the flight envelope, excessive cooling mass flows are actually being used during the cruise and the descent segment, since these operating points are characterized by significantly reduced temperatures. The main objective of the current work is the preliminary evaluation of the performance benefits, which can be achieved during a long range civil flight when decreasing the cooling bleed fraction during cruise. This is considered an essential step before any study concerning the consequences upon lifing is conducted. A conventional engine is optimized to meet the respective flight requirements, operating under constant cooling fraction throughout the mission. Reduction in cooling mass flow is applied, changing in such a way its off-design performance. Changes in typical engine parameters are identified and are graphically presented versus bleed flow reduction. Moreover, making use of a model providing for the drag polar of an airframe, while taking into account of the continuous weight reduction due to fuel burn, the variation of fuel consumption during cruise is also calculated. Fuel benefits are identified; a 40% reduction of the cooling fraction results in cruise fuel dropping by 0.75%. This can be justified on the basis of decreasing the cooling of the mainstream and increasing the mass flow, which is expanded through the turbine stages upstream. Although a metal temperature increase is also expected, it is accompanied by a Combustor Outlet and Turbine Entry temperature reduction.


2019 ◽  
Vol 7 (11) ◽  
pp. 381 ◽  
Author(s):  
Vedran Mrzljak ◽  
Paolo Blecich ◽  
Nikola Anđelić ◽  
Ivan Lorencin

A forced draft fan, used for the supply of combustion air into the steam generator of the conventional liquefied natural gas (LNG) carrier was analyzed from the aspect of energy and exergy. The power delivered from the induction motor to the fan was calculated using the manufacturer’s data. The most significant impact on the fan energy power losses is from the air temperature difference between the fan outlet and inlet. The fan energy power losses are inversely proportional to the fan energy efficiency, and the values are between 19.9% and 63.4%, for the entire range of observed steam system loads. The fan exergy destruction depends primarily on the driving power and on the air mass flow rate. At higher loads, an important influence on the fan exergy destruction is from the air pressure at the fan outlet. The exergy efficiency change of the analyzed fan, for the range of observed steam system loads, is directly proportional to the rate of change in the air mass flow, whereas the obtained values of exergy efficiency are between 5.10% and 53.93%. The impact of ambient temperature on the fan exergy destruction and exergy efficiency exhibits is different than in most other steam system components. A change in ambient temperature of 10 °C causes a change in the exergy efficiency of the forced draft fan less than 0.5% in the entire range of observed steam loads.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Marcos Paulo Gabriel da Costa e Silva ◽  
Júlio Cesar de Carvalho Miranda

Abstract This work presents exergy analyses applied in four different conceptual second-generation ethanol production processes through a thermochemical route using catalysts based on Molybdenum (P-1), Copper (P-2), and Rhodium (P-3 and P-4), aiming to assess their exergetic efficiencies. The results show that the conceptual processes have satisfactory exergy efficiencies in both cases, when compared among themselves and when compared with other processes reported in literature. The processes’ efficiency for P-1, P-2, P-3 and P-4 were, respectively, 52.4%, 41.4%, 43.7% and 48.9%. The reactors were the sections in which exergy destruction was more significant, due to the exothermic reactions and mixing points (where streams with different temperatures were mixed). Such results show the potential of thermochemical ethanol production, besides opening the possibilities of process improvement. Graphic abstract


Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


2018 ◽  
Vol 2018 ◽  
pp. 1-26 ◽  
Author(s):  
Gang Zhou ◽  
Lei Qiu ◽  
Wenzheng Zhang ◽  
Jiao Xue

The aim of this paper was to develop a model that can characterize the actual micropore structures in coal and gain an in-depth insight into water’s seepage rules in coal pores under different pressure gradients from a microscopic perspective. To achieve this goal, long-flame coals were first scanned by an X-ray 3D microscope; then, through a representative elementary volume (REV) analysis, the optimal side length was determined to be 60 μm; subsequently, by using Avizo software, the coal’s micropore structures were acquired. Considering that the porosity varies in the same coal sample, this study selected four regions in the sample for an in-depth analysis. Moreover, numerical simulations on water’s seepage behaviors in coal under 30 different pressure gradients were performed. The results show that (1) the variation of the simulated seepage velocity and pressure gradient accorded with Forchheimer’s high-velocity nonlinear seepage rules; (2) the permeability did not necessarily increase with the increase of the effective porosity; (3) in the same model, under different pressure gradients, the average seepage pressure decreased gradually, while the average seepage velocity and average mass flow varied greatly with the increase of the seepage length; and (4) under the same pressure gradient, the increase of the average mass flow from the inlet to the outlet became more significant under a higher inlet pressure.


2014 ◽  
Vol 6 ◽  
pp. 923937 ◽  
Author(s):  
Yuekun Sun ◽  
Zhigang Zuo ◽  
Shuhong Liu ◽  
Jintao Liu ◽  
Yulin Wu

Pressure fluctuations are very important characteristics in pump turbine's operation. Many researches have focused on the characteristics (amplitude and frequencies) of pressure fluctuations at specific locations, but little researches mentioned the distribution of pressure fluctuations in a pump turbine. In this paper, 3D numerical simulations using SSTk − ω turbulence model were carried out to predict the pressure fluctuations distribution in a prototype pump turbine at pump mode. Three operating points with different mass flow rates and different guide vanes’ openings were simulated. The numerical results show how pressure fluctuations at blade passing frequency (BPF) and its harmonics vary along the whole flow path direction, as well as along the circumferential direction. BPF is the first dominant frequency in vaneless space. Pressure fluctuation component at this frequency rapidly decays towards upstream (to draft tube) and downstream (to spiral casing). In contrast, pressure fluctuations component at 3BPF spreads to upstream and downstream with almost constant amplitude. Amplitude and frequencies of pressure fluctuations also vary along different circumferential locations in vaneless space. When the mass flow and guide vanes’ opening are different, the distribution of pressure fluctuations along the two directions is different basically.


2020 ◽  
Vol 14 (4) ◽  
pp. 480-487
Author(s):  
Vedran Mrzljak ◽  
Sandi Baressi Šegota ◽  
Hrvoje Meštrić ◽  
Zlatan Car

The paper presents an analysis of two steam turbine operation regimes - regime with all steam extractions opened (base process) and regime with all steam extractions closed. Closing of all steam extractions significantly increases turbine real developed power for 5215.88 kW and increases turbine energy and exergy losses with simultaneous decrease of turbine energy and exergy efficiencies for more than 2%. First extracted steam mass flow rate has a dominant influence on turbine power losses (in comparison to turbine maximum power when all of steam extractions are closed). Cumulative power losses caused by steam mass flow rate extractions are the highest in the fourth turbine segment and equal to 1687.82 kW.


Sign in / Sign up

Export Citation Format

Share Document