scholarly journals Differentially Expressed MicroRNAs in Conservatively Treated Nontraumatic Osteonecrosis Compared with Healthy Controls

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Biaofang Wei ◽  
Wei Wei ◽  
Liang Wang ◽  
Baoxiang Zhao

Deregulation of microRNAs (miRNAs) contributes to nontraumatic osteonecrosis of the femoral head (ONFH-N), but the differentially expressed circulating miRNAs in patients with ONFH-N receiving nonsurgical therapy are unknown. This study aimed to determine the miRNAs expression profile of patients with ONFH-N receiving conservative treatments. This was a case-control prospective study of 43 patients with ONFH-N and 43 participants without ONFH-N, enrolled from 10/2014 to 10/2016 at the Department of Orthopedics of the Linyi People’s Hospital (China). The two groups were matched for age, gender, and living area. Microarray analysis and quantitative RT-PCR were used to examine the differentially expressed miRNAs. Bioinformatics was used to predict miRNA target genes and signaling pathways. Microarray and quantitative RT-PCR revealed that nine miRNAs were downregulated and five miRNAs were upregulated in ONFH-N(n=3)compared with controls(n=3). Bioinformatics showed that calcium-mediated signaling pathway, regulation of calcium ion transmembrane transporter activity, cytoskeletal protein binding, and caveolae macromolecular signaling complex were probably regulated by the identified differentially expressed miRNAs. In the remaining 80 subjects (n=40/group), miR-335-5p was downregulated(P=0.01)and miR-100-5p was upregulated(P=0.02)in ONFH-N compared with controls. In conclusion, some miRNAs are differentially expressed in conservatively treated ONFH-N compared with controls. Those miRNAs could contribute to the pathogenesis of ONFH-N.

Genome ◽  
2013 ◽  
Vol 56 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Kuibi Tan ◽  
Jing Chen ◽  
Wuxian Li ◽  
Yuyu Chen ◽  
Weiguo Sui ◽  
...  

The aim of this study was to investigate the differential expression characteristics and the roles of the genome-wide microRNAs (miRNAs) in immunoglobulin A nephropathy (IgAN) kidney tissues. We used Illumina high-throughput sequencing technology to evaluate the miRNAs expression of six biopsy tissues from IgAN and six normal renal cortex specimens from patients with renal cell carcinoma. We observed a total of 85 miRNAs that were differentially expressed in the six IgAN patients, of which 11 miRNAs were up-regulated and 74 miRNAs were down-regulated in patients' tissues compared with control tissues. Additionally, we identified 55 candidate novel miRNAs in our study, which comprised seven candidates who were detected in the IgAN group and 49 candidates who were detected in the control group. Only one candidate (miR-n-9) was expressed in both groups. The bioinformatics showed that the regulated target genes of differentially expressed miRNAs were associated with immune and renal pathological changes. The identification of specific tissue miRNAs in our study not only helped clarify the genetics or immunology mechanisms involved in the pathogenesis of IgAN but also helped explain the pathological changes in the kidney tissues. We hypothesize that some significant miRNAs might potentially serve as novel diagnostic biomarkers in IgAN patients.


Cardiology ◽  
2015 ◽  
Vol 130 (4) ◽  
pp. 223-233 ◽  
Author(s):  
Ling Jing ◽  
Chengmei Jin ◽  
Ying Lu ◽  
Pingyan Huo ◽  
Lijun Zhou ◽  
...  

Objectives: We aimed to investigate the differentially expressed microRNAs (miRNAs) and their target genes in human alcoholic cardiomyopathy (ACM). Methods: The expression levels of plasma miRNAs of 78 male ACM patients and 78 healthy men were detected by using the 6th-generation miRCURY™ LNA array (v.16.0). The prediction analysis for microarrays (PAM) method was used to identify the differentially expressed miRNAs. Target genes of the identified differentially expressed miRNAs were predicted using TargetScan 5.2 and Miranda. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to perform functional annotation and pathway enrichment analysis of target genes respectively, followed by real-time RT-PCR analysis to validate the expression changes of miRNAs. Results: Twenty-one differentially expressed miRNAs were identified. Nine differentially expressed miRNAs (hsa-miR-506, hsa-miR-1285, hsa-miR-512-3P, hsa-miR-138, hsa-miR-485-5P, hsa-miR-4262, hsa-miR-548c-3P, has-miR-548a-5P and kshv-miR-K12-1), involved in multiple functions and pathways, were selected for real-time RT-PCR confirmation. Moreover, two significantly important subpathways (neurotrophin signaling pathway and inositol phosphate metabolism) were predicted. Conclusion: The screened differentially expressed miRNAs may be involved in the development of ACM. Specific miRNAs, such as miR-138, may be considered as a new target for the early diagnosis and treatment of human ACM.


Author(s):  
Yu-Qin Deng ◽  
Song Li ◽  
Zheng-Yan Liang ◽  
Fen Li ◽  
Si-Lu Wen ◽  
...  

Background: Abnormal expression of miRNA is a common feature in many diseases. Some studies have also emphasized that miRNAs play an important role in asthma and allergic rhinitis (AR). This study attempts to reveal the differences between miRNAs expression and normal nasal mucosa in AR patients by microarray method, so as to further understand the molecular mechanism of AR development. Method: MiRNA microrrays were used for analyzing six samples of the nasal mucosa of AR and six samples of nonallergic patients. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) of some differentially expressed miRNAs was used to confirm the array results. Furthermore, pathway analysis was carried out. Results: The microarray identified that 64 miRNAs exhibited altered expression in the nasal mucosa of the AR group when compared with the control group. Moreover, the expression levels of ten miRNAs were significantly altered in the AR group. To verify the results of the microarray, three differentially expressed miRNA were determined by RT-PCR, and the results also confirmed these changes. Ten differentially expressed miRNAs were present in the nasal mucosa of AR patients compared with the control group, and three differentially expressed miRNAs, as miR-1244, miR-4651 and miR-7641, were determined by RT-PCR, indicating that they play important roles in the process of AR. Conclusion: miR-1244, miR-4651 and miR-7641 may play important roles in the process of AR. Sequencing analysis indicated that three kinds of mutations exist in MAPK8 3’UTR, which may play a role in binding with miR-7641, and then influence the AR process. Single miRNA or, more probably, their sets hold the promise for their use as biomarkers of allergic rhinitis. They may also be promising targets in future therapies.


2021 ◽  
Vol 15 (8) ◽  
pp. 927-936 ◽  
Author(s):  
Yan Peng ◽  
Yuewu Liu ◽  
Xinbo Chen

Background: Drought is one of the most damaging and widespread abiotic stresses that can severely limit the rice production. MicroRNAs (miRNAs) act as a promising tool for improving the drought tolerance of rice and have become a hot spot in recent years. Objective: In order to further extend the understanding of miRNAs, the functions of miRNAs in rice under drought stress are analyzed by bioinformatics. Method: In this study, we integrated miRNAs and genes transcriptome data of rice under the drought stress. Some bioinformatics methods were used to reveal the functions of miRNAs in rice under drought stress. These methods included target genes identification, differentially expressed miRNAs screening, enrichment analysis of DEGs, network constructions for miRNA-target and target-target proteins interaction. Results: (1) A total of 229 miRNAs with differential expression in rice under the drought stress, corresponding to 73 rice miRNAs families, were identified. (2) 1035 differentially expressed genes (DEGs) were identified, which included 357 up-regulated genes, 542 down-regulated genes and 136 up/down-regulated genes. (3) The network of regulatory relationships between 73 rice miRNAs families and 1035 DEGs was constructed. (4) 25 UP_KEYWORDS terms of DEGs, 125 GO terms and 7 pathways were obtained. (5) The protein-protein interaction network of 1035 DEGs was constructed. Conclusion: (1) MiRNA-regulated targets in rice might mainly involve in a series of basic biological processes and pathways under drought conditions. (2) MiRNAs in rice might play critical roles in Lignin degradation and ABA biosynthesis. (3) MiRNAs in rice might play an important role in drought signal perceiving and transduction.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Xiaolin Wu ◽  
Xipeng Chen ◽  
Wenxiang Mi ◽  
Tingting Wu ◽  
Qinhua Gu ◽  
...  

Peri-implantitis, which is characterized by dense inflammatory infiltrates and increased osteoclast activity, can lead to alveolar bone destruction and implantation failure. miRNAs participate in the regulation of various inflammatory diseases, such as periodontitis and osteoporosis. Therefore, the present study aimed to investigate the differential expression of miRNAs in canine peri-implantitis and to explore the functions of their target genes. An miRNA sequence analysis was used to identify differentially expressed miRNAs in peri-implantitis. Under the criteria of a fold-change >1.5 and P<0.01, 8 up-regulated and 30 down-regulated miRNAs were selected for predictions of target genes and their biological functions. Based on the results of Gene Ontology (GO) and KEGG pathway analyses, these miRNAs may fine-tune the inflammatory process in peri-implantitis through an intricate mechanism. The results of quantitative real-time PCR (qRT-PCR) revealed that let-7g, miR-27a, and miR-145 may play important roles in peri-implantitis and are worth further investigation. The results of the present study provide insights into the potential biological effects of the differentially expressed miRNAs, and specific enrichment of target genes involved in the mitogen-activated protein kinase (MAPK) signaling pathway was observed. These findings highlight the intricate and specific roles of miRNAs in inflammation and osteoclastogenesis, both of which are key aspects of peri-implantitis, and thus may contribute to future investigations of the etiology, underlying mechanism, and treatment of peri-implantitis.


Author(s):  
Chengyi Fu ◽  
Shu Lou ◽  
Guirong Zhu ◽  
Liwen Fan ◽  
Xin Yu ◽  
...  

Objective: To identify new microRNA (miRNA)-mRNA networks in non-syndromic cleft lip with or without cleft palate (NSCL/P).Materials and Methods: Overlapping differentially expressed miRNAs (DEMs) were selected from cleft palate patients (GSE47939) and murine embryonic orofacial tissues (GSE20880). Next, the target genes of DEMs were predicted by Targetscan, miRDB, and FUNRICH, and further filtered through differentially expressed genes (DEGs) from NSCL/P patients and controls (GSE42589), MGI, MalaCards, and DECIPHER databases. The results were then confirmed by in vitro experiments. NSCL/P lip tissues were obtained to explore the expression of miRNAs and their target genes.Results: Let-7c-5p and miR-193a-3p were identified as DEMs, and their overexpression inhibited cell proliferation and promoted cell apoptosis. PIGA and TGFB2 were confirmed as targets of let-7c-5p and miR-193a-3p, respectively, and were involved in craniofacial development in mice. Negative correlation between miRNA and mRNA expression was detected in the NSCL/P lip tissues. They were also associated with the occurrence of NSCL/P based on the MGI, MalaCards, and DECIPHER databases.Conclusions: Let-7c-5p-PIGA and miR-193a-3p-TGFB2 networks may be involved in the development of NSCL/P.


2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10470
Author(s):  
Wanzhen Li ◽  
Shiqing Liu ◽  
Shihong Su ◽  
Yang Chen ◽  
Gengyun Sun

MicroRNA (miRNA, miR) has been reported to be highly implicated in a wide range of biological processes in lung cancer (LC), and identification of differentially expressed miRNAs between normal and LC samples has been widely used in the discovery of prognostic factors for overall survival (OS) and response to therapy. The present study was designed to develop and evaluate a miRNA-based signature with prognostic value for the OS of lung adenocarcinoma (LUAD), a common histologic subtype of LC. In brief, the miRNA expression profiles and clinicopathological factors of 499 LUAD patients were collected from The Cancer Genome Atlas (TCGA) database. Kaplan–Meier (K-M) survival analysis showed significant correlations between differentially expressed miRNAs and LUAD survival outcomes. Afterward, 1,000 resample LUAD training matrices based on the training set was applied to identify the potential prognostic miRNAs. The least absolute shrinkage and selection operator (LASSO) cox regression analysis was used to constructed a six-miRNA based prognostic signature for LUAD patients. Samples with different risk scores displayed distinct OS in K-M analysis, indicating considerable predictive accuracy of this signature in both training and validation sets. Furthermore, time-dependent receiver operating characteristic (ROC) analysis demonstrated the nomogram achieved higher predictive accuracy than any other clinical variables after incorporating the clinical information (age, sex, stage, and recurrence). In the stratification analysis, the prognostic value of this classifier in LUAD patients was validated to be independent of other clinicopathological variables, such as age, gender, tumor recurrence, and early stage. Gene set annotation analyses were also conducted through the Hallmark gene set and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating target genes of the six miRNAs were positively related to various molecular pathways of cancer, such as hallmark UV response, Wnt signaling pathway and mTOR signaling pathway. In addition, fresh cancer tissue samples and matched adjacent tissue samples from 12 LUAD patients were collected to verify the expression of miR-582’s target genes in the model, further revealing the potential relationship between SOX9, RASA1, CEP55, MAP4K4 and LUAD tumorigenesis, and validating the predictive value of the model. Taken together, the present study identified a robust signature for the OS prediction of LUAD patients, which could potentially aid in the individualized selection of therapeutic approaches for LUAD patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Danli Zhong ◽  
Chanyuan Wu ◽  
Dong Xu ◽  
Jingjing Bai ◽  
Qian Wang ◽  
...  

The present study is aimed at profiling circulating exosome-derived microRNAs (miRNAs/miRs) from patients with dermatomyositis (DM), in particular those complicated with interstitial lung disease (ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody-positive. Fifteen participants were enrolled, including five patients with DM complicated with ILDs prior to treatment with circulating anti-MDA5 antibody-positive status [DM-ILD-MDA5 Ab(+)], five DM patients without ILDs who were negative for 16 detectable myositis-specific antibodies [DM-nonILD-MSA16(-)], and five age- and gender-matched healthy donor controls (HCs). The characteristics of the exosomes extracted by Ribo™ Exosome Isolation Reagent were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Differentially expressed miRNAs, determined by next-generation deep sequencing, were identified through the criteria of ∣ log 2   fold   change ∣ ≥ 1 and P < 0.01 . A total of 38 miRNAs were significantly upregulated in exosomes from patients with DM-ILD-MDA5 Ab(+) compared to those from HC, while 21 miRNAs were significantly downregulated. Compared to exosomes derived from patients with DM-nonILD-MSA16(-), 51 miRNAs were significantly upregulated and 33 miRNAs were significantly downregulated from patients with DM-ILD-MDA5 Ab(+). A total of 73 exosomal miRNAs were significantly differentially expressed between DM-nonILD-MSA16(-) and HC. In particular, two miRNAs, Homo sapiens- (hsa-) miR-4488 and hsa-miR-1228-5p, were common differentially expressed miRNAs among three comparisons. GO and KEGG analyses suggested that several pathways may contribute the pathogenesis of DM-ILD-MDA5 Ab(+) and DM-nonILD-MSA16(-), while PPI network analysis of hsa-miR-4488 and hsa-miR-1228-5p indicated that their predicted target genes, DExD-box helicase 39B and MDM2, may be involved in the mechanisms of DM-ILD-MDA5 Ab(+).


2019 ◽  
Vol 47 (8) ◽  
pp. 3580-3589 ◽  
Author(s):  
Yingyuan Li ◽  
Wulin Tan ◽  
Fang Ye ◽  
Faling Xue ◽  
Shaowei Gao ◽  
...  

Objective We aimed to explore potential microRNAs (miRNAs) and target genes related to atrial fibrillation (AF). Methods Data for microarrays GSE70887 and GSE68475, both of which include AF and control groups, were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs between AF and control groups were identified within each microarray, and the intersection of these two sets was obtained. These miRNAs were mapped to target genes in the miRNet database. Functional annotation and enrichment analysis of these target genes was performed in the DAVID database. The protein-protein interaction (PPI) network from the STRING database and the miRNA-target-gene network were merged into a PPI-miRNA network using Cytoscape software. Modules of this network containing miRNAs were detected and further analyzed. Results Ten differentially expressed miRNAs and 1520 target genes were identified. Three PPI-miRNA modules were constructed, which contained miR-424, miR-15a, miR-542-3p, and miR-421 as well as their target genes, CDK1, CDK6, and CCND3. Conclusion The identified miRNAs and genes may be related to the pathogenesis of AF. Thus, they may be potential biomarkers for diagnosis and targets for treatment of AF.


Sign in / Sign up

Export Citation Format

Share Document