Proximate Analysis of British Columbia Herring in Relation to Season and Condition Factor

1939 ◽  
Vol 4b (5) ◽  
pp. 478-490
Author(s):  
John Lawson Hart ◽  
Albert L. Tester ◽  
Desmond Beall ◽  
John P. Tully

Analysis by standard methods of samples of Clupea pallasii from different seasons and localities in British Columbia showed the following ranges in composition: water, 64.2 to 80.2%; oil, 4.1 to 19.4%; protein, 10.1 to 16.8%; ash, 1.9 to 2.8%. Oil content is highest in summer, declines during the fall and winter, and falls to a minimum after spawning time in early spring. There is an accompanying decline in the weight of the fish. Herring are highly variable in calorific value (2.41 to 0.94 Calories per gram). Potential oil yields on reduction as high as 30 gallons per ton are indicated with a minimum of 7 gallons per ton. Average condition factors for samples were determined by averaging the individual condition factors obtained from [Formula: see text], when C is the condition factor, W is weight in grams, L is length in millimetres, and 3.26 is the exponent in the empirically fitted equation W = CLn. This condition factor was found to be positively correlated with oil content and to follow in general the same seasonal trend.

1936 ◽  
Vol 2 (5) ◽  
pp. 463-468 ◽  
Author(s):  
W. A. Riddell

Samples of canned coho (blueback) salmon (Oncorhynchiis kisutch), from fish caught each month of the fishing season (May-September) in a limited area on the coast of British Columbia, were subjected to analysis from which nutritive values were determined by the calculation of calorific values. The average percentages of constituents in composite samples of the entire contents were: water, 72.8; fat, 4.50; protein, 19.9; sodium chloride-free ash, 1.37; sodium chloride, 1.13; calorific value per pound of contents, 562. Percentages of fat, protein, sodium chloride-free minerals, and consequently the food value, reached a maximum in cans containing fish caught in mid-July.


1936 ◽  
Vol 2 (5) ◽  
pp. 457-460
Author(s):  
F. D. White

Proximate analyses of samples of canned pilchard from fish caught early and late in the season in one vicinity on the west coast of Vancouver island are tabulated. The average calorific value per pound of content was 747 and 1074 Calories, respectively. The percentage of fat (18.5) in the late-caught fish was almost twice as great as that in the early-caught fish. Separate proximate analyses of the flesh, skin, and bone disclosed significant changes in the percentages of fat, protein, and minerals in these components between the beginning and end of the season.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea Y Frommel ◽  
Justin Carless ◽  
Brian P V Hunt ◽  
Colin J Brauner

Abstract Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl−]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl−] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.


2019 ◽  
Author(s):  
Ulrike Niemeier ◽  
Claudia Timmreck ◽  
Kirstin Krüger

Abstract. In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the 3rd largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, a requirement to get a long lasting stratospheric sulfate layer. The first eruption on March 17th injected 4.7 Tg SO2 into the stratosphere, the second eruption 2.3 Tg SO2 on May, 16th. In recent volcanic emission data sets these eruption phases are merged together to one large eruption phase for Mt. Agung in March 1963 with an injection rate of 7 Tg SO2. The injected sulfur forms a sulfate layer in the stratosphere. The evolution of sulfur is non-linear and depends on the injection rate and aerosol background conditions. We performed ensembles of two model experiments, one with a single and a second one with two eruptions. The two smaller eruptions result in a lower burden, smaller particles and 0.1 to 0.3 Wm−2 (10–20 %) lower radiative forcing in monthly mean global average compared to the individual eruption experiment. The differences are the consequence of slightly stronger meridional transport due to different seasons of the eruptions, lower injection height of the second eruption and the resulting different aerosol evolution. The differences between the two experiments are significant but smaller than the variance of the individual ensemble means. Overall, the evolution of the volcanic clouds is different in case of two eruptions than with a single eruption only. We conclude that there is no justification to use one eruption only and both climatic eruptions should be taken into account in future emission datasets.


2010 ◽  
Vol 142 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Peter J. Landolt ◽  
D. Thomas Lowery ◽  
Lawrence C. Wright ◽  
Constance Smithhisler ◽  
Christelle Gúedot ◽  
...  

AbstractLarvae of Abagrotis orbis (Grote) (Lepidoptera: Noctuidae) are climbing cutworms and can damage grapevines, Vitis vinifera L. (Vitaceae), in early spring by consuming expanding buds. A sex attractant would be useful for monitoring this insect in commercial vineyards. (Z)-7-Tetradecenyl acetate and (Z)-11-hexadecenyl acetate were found in extracts of female abdominal tips. In multiple field experiments, male A. orbis were captured in traps baited with a combination of these two chemicals but not in traps baited with either chemical alone. Males were trapped from mid-September to early October in south-central Washington and south-central British Columbia. Other noctuid moths (Mamestra configurata Walker, Xestia c-nigrum (L.), and Feltia jaculifera (Guenée)) were also captured in traps baited with the A. orbis pheromone and may complicate the use of this lure to monitor A. orbis. Abagrotis discoidalis (Grote) was captured in traps baited with (Z)-7-tetradecenyl acetate but not in traps baited with the two chemicals together.


2021 ◽  
Author(s):  
Sobia Shahzad ◽  
Mumtaz Hussain ◽  
Hassan Munir ◽  
Muhammad Arfan

Abstract Exploring extractable phytochemicals from locally adapted sisal plant vegetation vary seasonally at different locations. This study elaborated proximate composition and phytochemical heterogeneity in sisal due to varying environmental conditions analyzed from five districts, i.e., Chakwal, Khushab, Rawalpindi, Faisalabad, and Layyah in Punjab, Pakistan. Extensive surveying and plant sampling across two years 2017-18 and 2018-19, during mid-spring, summer, autumn, and winter seasons were carried out for understanding the seasonal impact on sisal. The present study was designed in a randomized complete block design (RCBD) and analyzed considering seasonal, yearly, and locational impact. The spatial differences in phytochemicals concentration were strongly associated with environmental conditions prevailing in different seasons. Autumn season reflected saponins, tannins, and flavonoids in higher concentrations during 2018-19 while steroids and terpenoids were higher during spring 2018-19. While Spatio-temporal variations in the proximate analysis were more apparent in different samples collected from different districts. Data recorded for the Khushab district and autumn season reflected the higher composition of a proximate analysis and phytochemical contents as compared to other seasons. Overall, the spatial differences in phytochemicals concentration were strongly associated with soils and environmental conditions prevailing in different seasons in selected districts.


1984 ◽  
Vol 21 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Nathan L. Green ◽  
Paul Henderson

A suite of hy-normative hawaiites, ne-normative mugearite, and calc-alkaline andesitic rocks from the Garibaldi Lake area exhibits fractionated, slightly concave-upward REE patterns (CeN/YbN = 4.5–15), heavy REE contents about 5–10 times the chondritic abundances, and no Eu anomalies. It is unlikely that the REE patterns provide information concerning partial melting conditions beneath southwestern British Columbia because they have probably been modified substantially by upper crustal processes including crustal contamination and (or) crystal fractionation. The REE contents of the Garibaldi Lake lavas are not incompatible with previous interpretations that (1) the hawaiites have undergone considerable fractionation of olivine, plagioclase, and clinopyroxene; and (2) the individual andesitic suites were derived from separate batches of chemically distinct magma that evolved along different high-level crystallization trends. In general, however, the andesites are characterized by lower light REE contents than the basaltic andesites. These differences in LREE abundances may reflect different amounts of LREE-rich accessory phases, such as apatite, sphene, or allanite, assimilated from the underlying quartz diorites.


2021 ◽  
pp. 56-62
Author(s):  
Theophilus Apenuvor ◽  
John Blay ◽  
Joseph Aggreyfynn ◽  
Simon Drafor

Over-population and stunted growth had been major challenges in the culture of tilapia. The use of synthetic androgen 17- α Methyl Testosterone (MT) was a breakthrough. However, its optimum level towards effective masculinization and growth is a concern. The aim of this research was to ascertain the optimum level of MT towards effective all-male population production and growth of Black-Chinned tilapia. In the present study, the effect of different dose rates of synthetic androgen 17-α Methyl Testosterone (MT) i.e., 0, 30, 60, and 120 mg of the hormone per kg of feed on sex, growth, and condition of Black-Chinned tilapia was evaluated. MT was administered orally by using powdered dry starter feed (Crude Protein 40 %) and Ethanol. The fry was fed for 30 days in the experimental tanks. At the end of the experiment, the sex ratios were determined by examining the operculum coloration as a means of sex identification. Growth performance was monitored by measuring and recording the morphometric characteristics. Bodyweight and total length of the fish on the start of feeding, end of feeding (one month sex reversal period), and two months after feeding were measured. The results of the present study showed that all MT receiving treatment showed a significantly higher male proportion than the control (0 mg MT/kg feed individuals). In all MT treatments groups, the control expects the 30 mg MT/kg in feed individuals’ deviate significantly from the normal 1:1 sex ratio (Chi-square analysis). The dose rate of 120 mg MT /kg feed resulted in the maximum male population (92.7%). Hence, for an effective high percentage of all-male population production in Black-Chinned tilapia, 120 mg MT /kg in feed is recommended. In terms of growth and condition factor, all the individual treatments, as well as the control, showed no significant difference. All the treated individuals showed similar condition factors during the pre and post-treatment, however, the individuals treated with 30 mg MT /kg feed exhibited better condition during the pre-treatment than the post-treatment period. Temperature, pH and dissolved oxygen recorded in this study were within the desirable limit for tilapia.


2020 ◽  
Vol 190 ◽  
pp. 00030
Author(s):  
Qurrotin Ayunina Maulida Okta Arifianti ◽  
Azmi Alvian Gabriel ◽  
Syarif Hidayatulloh ◽  
Kuntum Khoiro Ummatin

The current research aimed to increase the calorific value of woody cutting waste briquette with paper waste pulp as binder. There were three different binder variation used in this study, they are 5 %, 10 %, and 15 %. To create a briquette, a cylindrical iron mold with diameter of 3.5 cm and height of 3 cm and a hydraulic press with 2 t power were applied. The physical characteristics of the combination woody waste briquette and paper waste pulp, such as moisture content, ash content, volatile matter and carbon fix were examined using proximate analysis. The calorific value of briquetted fuel was tested by bomb calorimeter. The combustion test was performed to determine the combustion characteristic of briquettes, for example initial ignition time, temperature distribution, and combustion process duration. The general result shows that the calorific value of briquette stood in the range of 4 876 kCal kg–1 to 4 993 kCal kg–1. The maximum moisture content of briquette was 5.32 %. The longest burning time was 105 min.


Sign in / Sign up

Export Citation Format

Share Document