scholarly journals DNA Methyltransferases in Malar Melasma and Their Modification by Sunscreen in Combination with 4% Niacinamide, 0.05% Retinoic Acid, or Placebo

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Andres Eduardo Campuzano-García ◽  
Bertha Torres-Alvarez ◽  
Diana Hernández-Blanco ◽  
Cornelia Fuentes-Ahumada ◽  
Juan Diego Cortés-García ◽  
...  

Background. Malar melasma has a chronic and recurrent character that may be related to epigenetic changes. Objective. To recognize the expression and DNA methylation of DNA methyltransferases (DNMTs) in malar melasma and perilesional skin, as well as the changes in DNMTs after their treatment with sunscreen in combination with 4% niacinamide, 0.05% retinoic acid, or placebo. Methods. Thirty female patients were clinically evaluated for the expression of DNMT1 and DNMT3b using real-time PCR and immunofluorescence. These initial results were compared to results after eight weeks of treatment with sunscreen in combination with niacinamide, retinoic acid, or placebo. Results. The relative expression of DNMT1 was significantly elevated in melasma compared with unaffected skin in all subjects, indicating DNA hypermethylation. After treatment, it was decreased in all groups: niacinamide (7 versus 1; p<0.01), retinoic acid (7 versus 2; p<0.05), and placebo (7 versus 3; p<0.05), which correlates with clinical improvement. DNMT3b was not overexpressed in lesional skin but reduced in all groups. Conclusions. We found DNA hypermethylation in melasma lesions. Environmental factors such as solar radiation may induce cellular changes that trigger hyperpigmentation through the activation of pathways regulated by epigenetic modifications. However, limiting or decreasing DNA methylation through sunscreen, niacinamide, and retinoic acid treatments that provide photoprotection and genetic transcription can counteract this.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1204-1204
Author(s):  
Annegret Glasow ◽  
Angela Barrett ◽  
Rajeev Gupta ◽  
David Grimwade ◽  
Marieke von Lindern ◽  
...  

Abstract Retinoids exert a variety of effects on both normal and malignant hematopoietic cells. To date, three different retinoic acid receptor (RAR) and retinoid X receptor (RXR) genes have been characterized, each encoding multiple N-terminal protein isoforms. RXRs serve as co-regulators for RARs, and many other nuclear receptors integrating different signalling pathways. All-trans-retinoic acid (ATRA) signaling pathway is of critical importance for optimal myelomonocytic differentiation and its disruption by translocations of the RARα gene leads to acute promyelocytic leukemia (APL). APL associated fusion oncoproteins, such as PML-RARα and PLZF-RARα, function through recruitment of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), thus promoting an inactive chromatin state and leading to repression of RARα target genes. Recently, we demonstrated that up-regulation of RARα2 expression by ATRA directly correlates with differentiation of APL and non-APL AML cells and that RARα2 transcription is silenced by DNA methylation in AML cell lines. Using primary AML samples as well as normal cord and peripheral blood derived cells representing different stages of myelomonocytic development we now show that expression of RARα2 increases with maturation of hematopietic cells. Expression of RARα1 on the other hand, which is transcribed from a distinct promoter, remains relatively constant throughout the different stages of myelomonocytic development. The levels of RARα1 expression in various primary AML cell types appear to be similar to those found in normal hematopietic cells. Consistent with data derived from AML cell lines, however, the RARα2 isoform is poorly expressed in all samples. Compared with CD34+/CD133+ or CD34+ progenitors, and more mature CD33+ myeloid cells, RARα2 is expressed at much lower levels in a variety of primary AML cells and its expression is not effectively induced by myelomonocytic growth factors and/or ATRA. Negatively acting epigenetic changes, such as DNA methylation, appear to be responsible for deregulated expression of RARα2 in AML cells, although their pattern and extent differs significantly between AML cell lines and primary AML samples. Taken together our data suggest that agents, which revert negatively acting epigenetic changes may restore expression of the RARα2 isoform in AML cells and render them more responsive to ATRA as well as other differentiation inducers.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2943
Author(s):  
Nathalia Noschang Mittelstaedt ◽  
André Luiz Becker ◽  
Deise Nascimento de Freitas ◽  
Rafael F. Zanin ◽  
Renato T. Stein ◽  
...  

The generation of memory is a cardinal feature of the adaptive immune response, involving different factors in a complex process of cellular differentiation. This process is essential for protecting the second encounter with pathogens and is the mechanism by which vaccines work. Epigenetic changes play important roles in the regulation of cell differentiation events. There are three types of epigenetic regulation: DNA methylation, histone modification, and microRNA expression. One of these epigenetic changes, DNA methylation, occurs in cytosine residues, mainly in CpG dinucleotides. This brief review aimed to analyse the literature to verify the involvement of DNA methylation during memory T and B cell development. Several studies have highlighted the importance of the DNA methyltransferases, enzymes that catalyse the methylation of DNA, during memory differentiation, maintenance, and function. The methylation profile within different subsets of naïve activated and memory cells could be an interesting tool to help monitor immune memory response.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0
Author(s):  
Bogdan Kolarz ◽  
Maria Majdan

Epigenetics is a field of science which describes external and environmental modifications to DNA without altering their primary sequences of nucleotides. Contrary to genetic changes, epigenetic modifications are reversible. The epigenetic changes appear as a result of the influence of external factors, such as diet or stress. Epigenetic mechanisms alter the accessibility of DNA by methylation of DNA or post-translational modifications of histones (acetylation, methylation, phosphorylation, ubiquitinqation). The extent of DNA methylation depends on the balance between DNA methyltransferases and demethylases. The main histone modifications are stimulated by K-acetyltransferases, histone deacetylases, K-metyltransferases and K-demethylases. There is proof that environmental modifications of this enzymes regulate immunological processes including autoimmunity in rheumatoid arthritis (RA). In this work we present epigenetic mechanisms involved in RA pathogenesis and a range of research presenting the possible impact of its modification in RA patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 225-225
Author(s):  
Aparna Vasanthakumar ◽  
Janet B Lepore ◽  
Matthew H Zegarek ◽  
Masha Kocherginsky ◽  
Mahi Singh ◽  
...  

Abstract Abstract 225 Cancer cells are characterized by abnormal DNA methylation, including overall genomic hypomethylation with concurrent region-specific hypo- and hyper-methylation, causing aberrant activation of some genes and the silencing of others. Three DNA methyltransferase (DNMT) enzymes catalyze DNA methylation in eukaryotic cells, DNMT1, DNMT3A, and DNMT3B. We discovered previously that cancer cells exhibit aberrant splicing of the DNMT3B gene, which produces transcripts containing premature stop codons that encode truncated proteins lacking the catalytic domain. When we bred transgenic mice expressing DNMT3B7, one of the aberrantly spliced DNMT3B isoforms found most commonly in cancer cells, with the Eμ-Myc mice, a mouse model for B cell lymphomas, we observed an acceleration of mediastinal lymphomagenesis along with changes in the expression of several genes involved in oncogenesis. The acceleration in tumorigenesis was associated with global DNA hypermethylation, and further analyses showed that these changes in DNA methylation were heterogeneous in tumors derived from Eμ-Myc/DNMT3B7 mice, a phenomenon reminiscent of human tumors. We hypothesized that DNMT3B7 altered DNA methylation by functioning as a dominant negative isoform of full-length endogenous mouse Dnmt3b, and therefore tested a second mouse model that has defects in DNA methylation. The introduction of Dnmt3b heterozygosity (Dnmt3b+/−) into the Eμ-Myc background accelerated mediastinal lymphomagenesis to an even greater extent, with more than 90% of the Eμ-Myc/Dnmt3b+/− mice developing mediastinal lymphomas within the first 120 days. This was also associated with an increase in global DNA methylation as measured by liquid chromatography-mass spectrometry, to a larger extent than in the Eμ-Myc/DNMT3B7 mice. Interestingly, the tumors from Eμ-Myc mice themselves showed global hypermethylation when compared to non-transformed cells from Eμ-Myc mice, suggesting that the transformation of cells that express Myc is a key aspect in the induction of global DNA hypermethylation. These observations led us to the hypothesis that Myc-mediated tumorigenesis is particularly sensitive to changes in DNA methylation. Brenner et al. demonstrated that Myc binds to Dnmt3a/b and recruits the methyltransferases to promoter regions of Myc targets, leading to DNA hypermethylation in these regions. We have also found previously that DNNMT3B7 binds with full-length DNMT3B, by co-immunoprecipitation studies. We hypothesize that either in the presence of DNMT3B7 or with Dnmt3b heterozygosity, Myc-Dnmt3a/b binding at promoters is enhanced, which leads to hypermethylation and repression of gene expression. Using Mycbp, a gene that was repressed in Eμ-Myc/DNMT3B7 tumors, we demonstrated that its promoter region was hypermethylated in both Eμ-Myc/DNMT3B7 and Eμ-Myc/Dnmt3b+/− tumors. The E-box, a conserved sequence located ∼100bp upstream of the transcription start site that Myc binds specifically, was hypomethylated in the Eμ-Myc/DNMT3B7 tumors, suggesting that there was an enrichment of Myc binding at this region. Chromatin immunoprecipitation analyses confirmed increased binding of Myc at the E-box of Mycbp in the Eμ-Myc/DNMT3B7 tumors. Furthermore, we also demonstrated that Myc expression induced all the three DNA methyltransferases, suggesting that Myc-mediated lymphomagenesis may occur using a feedback loop which enhances expression of the DNA methyltransferases to regulate particular genes involved in tumorigenesis. This study offers an insight into the mechanism behind Myc-mediated tumorigenesis and provides evidence for the central role played by changes in DNA methylation patterns in this process. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2189-2189
Author(s):  
Martin F Kaiser ◽  
Alexander Murison ◽  
Charlotte Pawlyn ◽  
Eileen M Boyle ◽  
David C Johnson ◽  
...  

Abstract Introduction Multiple myeloma is a clinically highly heterogeneous disease, which is reflected by both a complex genome and epigenome. Dynamic epigenetic changes are involved at several stages of myeloma biology, such as transformation and disease progression. Our previous genome wide epigenetic analyses identified prognostically relevant DNA hypermethylation at specific tumor suppressor genes (Kaiser MF et al., Blood 2013), indicating that specific epigenetic programming influences clinical behavior. This clinically relevant finding prompted further investigation of the epigenomic structure of myeloma and its interaction with genetic aberrations. Material and Methods Genome wide DNA methylation of CD138-purified myeloma cells from 464 patients enrolled in the NCRI Myeloma XI trial at presentation were analyzed using the high resolution 450k DNA methylation array platform (Illumina). In addition, 4 plasma cell leukemia (PCL) cases (two t(11;14) and two (4;14)) and 7 myeloma cell lines (HMCL) carrying different translocations were analysed. Analyses were performed in R Bioconductor packages after filtering and removal of low quality and non-uniquely mapping probes. Results Variation in genome wide DNA methylation was analyzed using unsupervised hierarchical clustering of the 10,000 most variable probes, which revealed epigenetically defined subgroups of disease. Presence of recurrent IGH translocations was strongly associated with specific epigenetic profiles. All 60 cases with t(4;14) clustered into two highly similar sub-clusters, confirming that overexpression of the H3K36 methyltransferase MMSET in t(4;14) has a defined and specific effect on the myeloma epigenome. Interestingly, HMCLs KMS-11 and LP-1, which carry t(4;14), MM1.S, a t(14;16) cell line with an E1099K MMSET activating mutation as well as two PCLs with t(4;14) all clustered in one sub-clade. The majority (59/85) of t(11;14) cases showed global DNA hypomethylation compared to t(4;14) cases and clustered in one subclade, indicating a epigenetic programming effect associated with CCND1, with a subgroup of t(11;14) cases showing a variable DNA methylation pattern. In addition to translocation-defined subgroups, a small cluster of samples with a distinct epigenetic profile was identified. In total 7 cases with a shared specific DNA methylation pattern (median inter-sample correlation 0.4) were identified. The group was characterized by DNA hypermethylation (4,341 hypermethylated regions vs. 750 hypomethylated regions) in comparison to all other cases. Intersection of regions hypermethylated in this subgroups with ENCODE datasets revealed mapping to poised enhancers and promoters in H1-hESC, indicating functionally relevant epigenetic changes. Gene set enrichment analysis (KEGG) demonstrated enrichment of developmental pathway genes, e.g. Hedgehog signaling (adj p=5x10exp-13), amongst others and all four HOX clusters were differentially methylated in this group. Of note, three of seven cases in this subgroup carried a t(11;14) and all t(11;14) or t(11;14)-like HMCLs clustered closely together with these patient cases, but not with the cluster carrying the majority of t(11;14) myeloma or t(11;14) PCLs. This potentially indicates that t(11;14) HMCL could be derived from a subgroup of patients with specific epigenetic characteristics. Conclusion Our results indicate that the recurrent IGH translocations are fundamentally involved in shaping the myeloma epigenome through either direct upregulation of epigenetic modifiers (e.g. MMSET) or through insufficiently understood mechanisms. However, developmental epigenetic processes seem to independently contribute to the complexity of the epigenome in some cases. This work provides important insights into the spectrum of epigenetic subgroups of myeloma and helps identify subgroups of disease that may benefit from specific epigenetic therapies currently being developed. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3446-3446
Author(s):  
Petra Tschanter ◽  
Isabell Schulze ◽  
Nicole Bäumer ◽  
Beate Surmann ◽  
Konstantin Agelopoulos ◽  
...  

Abstract Abstract 3446 Acute myeloid leukaemia (AML) is a malignant disease with poor prognosis, which is, among other biological features, characterized by epigenetic changes including alterations in DNA methylation. DNA methyltransferases (DNMT) play an important role in regulation of DNA methylation and mutations of DNMT3A are frequently found in AML. We analyzed the effects of DNMT overexpression on leukemogenesis using an inducible DNMT3B mouse model (Linhart et al., 2007). To analyse the impact of DNMT3B overexpression on leukemia we retrovirally co-transduced lineage-negative bone marrow cells of wildtype and DNMT3Btg mice with a MSCV-cMyc-bcl2 and a MSCV-tTA-GFP containing vector. Under these conditions, doxycycline suppressed DNMT3B expression whereas absence of doxycycline led to overexpression of DNMT3B on the mRNA and protein level. DNMT3B overexpression was not toxic since colony formation in vitro did not differ between DNMT3B expressing and physiologically expressing cells. To analyze leukemogenesis, 5 × 104 sorted GFP-positive cells were transplanted into sublethally irradiated wildtype recipients. Both recipients of transduced wildtype cells and recipients of transduced DNMT3Btg cells developed leukemia with a tendency of delayed leukemogenesis in DNMT3B overexpressing mice. GFP positive leukemic cells were sorted and doxycycline regulated DNMT3B expression was verified by Western blot analysis in vitro. To determine the repopulation capacity of the leukemic cells we performed transplantation of GFP-positive primary leukemia cells into secondary wildtype recipients. Leukemia of both, wildtype and DNMT3B-overexpressing donors was transplantable and lethal. However, DNMT3Btg leukemic cells were severely impaired in leukemia development in secondary recipients. Secondary recipients of leukemic DNMT3Btg cells died significantly later (p= 0.02). Taken together, these findings demonstrate that DNMT3B expression impairs leukemia maintenance. Loss of DNMT activity might contribute to the pool size of leukemia initiating cells. Disclosures: Krug: Boehringer Ingelheim: Research Funding.


2020 ◽  
Vol 10 (9) ◽  
pp. 611
Author(s):  
Kalaiselvi Sivalingam ◽  
Thangavel Samikkannu

Cocaine abuse is known to alter mitochondrial biogenesis and induce epigenetic modification linked with neuronal dysfunction. Cocaine-induced epigenetic modification of DNA methylation and the mitochondrial genome may affect mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), as epigenetic DNA methylation is key to maintaining genomic integrity in the central nervous system (CNS). However, the impact of cocaine-mediated epigenetic changes in astrocytes has not yet been elucidated. In this study, we explored the neuroprotective effect of piracetam against cocaine-induced epigenetic changes in DNA methylation in astrocytes. To study our hypothesis, we exposed human astrocytes to cocaine alone or in combination with the nootropic drug piracetam. We examined the expression of the DNA methyltransferases (DNMTs) DNMT-1, DNMT-3A, and DNMT-3B; global DNA methylation levels of 5-methycytosine (5-mC); and induction of ten–eleven translocation (TET) enzymes in astrocytes. In addition, we analyzed mtDNA methylation by targeted next-generation bisulfite sequencing. Our data provide evidence that cocaine impairs DNMT activity and thereby has impacts on mtDNA, which might contribute to the neurodegeneration observed in cocaine users. These effects might be at least partially prevented by piracetam, allowing neuronal function to be maintained.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 922 ◽  
Author(s):  
Laura Casalino ◽  
Pasquale Verde

Among the major mechanisms involved in tumorigenesis, DNA methylation is an important epigenetic modification impacting both genomic stability and gene expression. Methylation of promoter-proximal CpG islands (CGIs) and transcriptional silencing of tumor suppressors represent the best characterized epigenetic changes in neoplastic cells. The global cancer-associated effects of DNA hypomethylation influence chromatin architecture and reactivation of repetitive elements. Moreover, recent analyses of cancer cell methylomes highlight the role of the DNA hypomethylation of super-enhancer regions critically controlling the expression of key oncogenic players. We will first summarize some basic aspects of DNA methylation in tumorigenesis, along with the role of dysregulated DNA methyltransferases and TET (Ten-Eleven Translocation)-family methylcytosine dioxygenases. We will then examine the potential contribution of epimutations to causality and heritability of cancer. By reviewing some representative genes subjected to hypermethylation-mediated silencing, we will survey their oncosuppressor functions and roles as biomarkers in various types of cancer. Epithelial-to-mesenchymal transition (EMT) and the gain of stem-like properties are critically involved in cancer cell dissemination, metastasis, and therapeutic resistance. However, the driver vs passenger roles of epigenetic changes, such as DNA methylation in EMT, are still poorly understood. Therefore, we will focus our attention on several aspects of DNA methylation in control of EMT and metastasis suppressors, including both protein-coding and noncoding genes.


2020 ◽  
Author(s):  
D Kaplun ◽  
G Filonova ◽  
Y. Lobanova ◽  
A Mazur ◽  
S Zhenilo

ABSTRACTGain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NcoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in slightly reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known whether Kaiso may attract DNA methyltransferase to influence DNA methylation level. The main idea of this work is that Kaiso may lead to DNA hypermethylation attracting de novo DNA methyltransferases. We demonstrated that Kaiso regulates TRIM25 promoter methylation. It can form a complex with DNMT3b. BTB/POZ domain of Kaiso and ADD domain of DNA methyltransferase are essential for complex formation. Thus, Kaiso can affect DNA methylation.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1540 ◽  
Author(s):  
Klara Cervena ◽  
Anna Siskova ◽  
Tomas Buchler ◽  
Pavel Vodicka ◽  
Veronika Vymetalkova

Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient’s methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.


Sign in / Sign up

Export Citation Format

Share Document