scholarly journals Lugol Increases Lipolysis through Upregulation of PPAR-Gamma and Downregulation of C/EBP-Alpha in Mature 3T3-L1 Adipocytes

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Cuellar-Rufino Sergio ◽  
Zepeda Rossana Citlali ◽  
Flores-Muñoz Mónica ◽  
Santiago-Roque Isela ◽  
Arroyo-Helguera Omar

Overweight and obesity are defined as excessive and abnormal fat accumulation that is harmful to health. This study analyzes the effect of different concentrations of the lugol solution (molecular iodine dissolved in potassium iodide) on lipolysis in cultured 3T3-L1-differentiated adipocytes. The mature adipocytes were treated with doses from 1 to 100 µm of lugol for 0.5, 6, and 24 h. The results showed that mature adipocytes exposed to lugol decrease their viability and increase caspase-3 activity with a lethal dose (LD50) of 473 µm. In mature adipocytes, lugol decreased the total intracellular lipid content, being significant at doses of 10 and 100 µm after 6 and 24 h of treatment (P<0.01), and the accumulation of intracellular triglycerides decreased after 24 h of exposure to lugol (P<0.05). Lugol treatment significantly increases the release of glycerol to the culture medium (P<0.05). The levels of adipocyte-specific transcription factors C/EBP-α were downregulated and PPAR-γ upregulated after 30 min with lugol. These results indicate a lipolytic effect of lugol dependent on PPAR-γ and C/EBP-α expression in mature 3T3-L1 adipocytes.

2020 ◽  
Author(s):  
Victoria A Ingham ◽  
Sara Elg ◽  
Sanjay C Nagi ◽  
Frank Dondelinger

AbstractThe increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Ziming Liu ◽  
Zhiwen Zhang ◽  
Ali Zhang ◽  
Fan Zhang ◽  
Wennan Du ◽  
...  

Abstract Increasing evidence has indicated a close relationship between diabetes mellitus (DM) and disc degeneration. As a potential therapeutic growth factor, osteogenic protein-1 (OP-1) has lots of protective effects on the healthy disc cell’s biology. The present study was aimed to investigate the effects of OP-1 on degenerative changes of nucleus pulposus (NP) cells in a high glucose culture. Rat NP cells were cultured in the baseline medium or the high glucose (0.2 M) culture medium. OP-1 was added into the high glucose culture medium to investigate whether its has some protective effects against degenerative changes of NP cells in the high glucose culture. NP cell apoptosis ratio, caspase-3/9 activity, expression of apoptosis-related molecules (Bcl-2, Bax, and caspase-3), matrix macromolecules (aggrecan and collagen II), and matrix remodeling enzymes (MMP-3, MMP-13, and ADAMTS-4), and immuno-staining of NP matrix proteins (aggrecan and collagen II) were evaluated. Compared with the baseline culture, high glucose culture significantly increased NP cell apoptosis ratio, caspase-3/9 activity, up-regulated expression of Bax, caspase-3, MMP-3, MMP-13 and ADAMTS-4, down-regulated expression of Bcl-2, aggrecan and collagen II, and decreased staining intensity of aggrecan and collagen II. However, the results of these parameters were partly reversed by the addition of OP-1 in the high glucose culture. OP-1 can alleviate high glucose microenvironment-induced degenerative changes of NP cells. The present study provides that OP-1 may be promising in retarding disc degeneration in DM patients.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Yanhai Jiang ◽  
Zhijie Xie ◽  
Jinying Yu ◽  
Lianqiang Fu

Abstract Nucleus pulposus (NP) cell apoptosis is a classical cellular character during intervertebral disc degeneration (IDD). Previous studies have shown that inflammatory cytokine-induced NP cell apoptosis plays an important role in disc degeneration. The present study was aimed to investigate whether resveratrol can suppress IL-1β-mediated NP cell apoptosis and the potential signal transduction pathway. Experimental rat NP cells were treated with culture medium containing IL-1β (20 ng/ml) for 7 days. Control NP cells were cultured in the baseline medium. Resveratrol was added along with culture medium to investigate its effects. The inhibitor LY294002 was used to study the role of the PI3K/Akt pathway. NP cell apoptosis was reflected by the caspase-3 activity, cell apoptosis ratio, and expression of apoptosis-related molecules (Bcl-2, Bax, caspase-3, cleaved caspase-3, and cleaved PARP). Compared with the control NP cells, IL-1β significantly increased caspase-3 activity, NP cell apoptosis ratio and mRNA/protein expression of Bax, caspase-3, cleaved caspase-3 and cleaved PARP, but decreased mRNA expression of Bcl-2. However, resveratrol partly suppressed the effects of IL-1β on those cell apoptosis-related parameters. Further analysis showed that IL-1β significantly decreased activity of the PI3K/Akt pathway whereas resveratrol partly increased activity of the PI3K/Akt pathway in NP cells treated with IL-1β. Additionally, when the inhibitor LY294002 was added along with the resveratrol, its protective effects against IL-1β-induced NP cell apoptosis were attenuated. In conclusion, resveratrol suppresses IL-1β-mediated NP cell apoptosis through activating the PI3K/Akt pathway. Resveratrol may be an effective drug to attenuate inflammatory cytokine-induced disc degenerative changes.


2016 ◽  
Vol 28 (8) ◽  
pp. 1172 ◽  
Author(s):  
Luis Baldoceda ◽  
Dominic Gagné ◽  
Christina Ramires Ferreira ◽  
Claude Robert

The decreased rate of pregnancy obtained in cattle using frozen in vitro embryos compared with in vivo embryos has been associated with over-accumulation of intracellular lipid, which causes cell damage during cryopreservation. It is believed that the higher lipid content of blastomeres of bovine embryos produced in vitro results in darker-coloured cytoplasm, which could be a consequence of impaired mitochondrial function. In this study, l-carnitine was used as a treatment to reduce embryonic lipid content by increasing metabolism in cultured bovine embryos. We have observed previously that in vivo embryos of different dairy breeds collected from cows housed and fed under the same conditions differed in lipid content and metabolism. As such, breed effects between Holstein and Jersey were also examined in terms of general appearance, lipid composition, mitochondrial activity and gene expression. Adding l-carnitine to the embryo culture medium reduced the lipid content in both breeds due to increased mitochondrial activity. The response to l-carnitine was weaker in Jersey than in Holstein embryos. Our results thus show that genetics influence the response of bovine embryos to stimulation of mitochondrial metabolism.


2020 ◽  
Vol 21 (9) ◽  
pp. 3383
Author(s):  
Kyung-Eun Lee ◽  
Youn-Hwa Nho ◽  
Seok Kyun Yun ◽  
Sung-Min Park ◽  
Seunghyun Kang ◽  
...  

In this study, caviar (sturgeon eggs) was used to elucidate its roles in adiponectin production and skin anti-aging. Recently, caviar has been largely used not only as a nutritional food, but also in cosmetic products. In particular, it has been reported that docosahexaenoic acid (DHA), as one of the main phospholipid components of caviar extract, induces intracellular lipid accumulation and the expression of adiponectin in adipocytes. Although adipocytes are well known to be associated with the skin dermis by secreting various factors (e.g., adiponectin), the effects of caviar extract and DHA on the skin are not well studied. Here, we demonstrate the effects of caviar extract and DHA on adipocyte differentiation and adiponectin production, resulting in a preventive role in UV-irradiated skin aging. Caviar extract and DHA enhanced adipocyte differentiation and promoted the synthesis of transcription factors controlling adipocyte differentiation and adiponectin. In addition, the mRNA expression levels of matrix metalloproteinase-1 (MMP-1) were decreased in UVB-irradiated Hs68 fibroblasts that were cultured in conditioned medium from caviar extract or DHA-treated differentiated adipocytes. Taken together, these results indicate that caviar extract and DHA induce adipocyte differentiation and adiponectin production, thereby inhibiting UVB-induced premature skin aging via the suppression of MMP-1 production.


2018 ◽  
Vol 30 (1) ◽  
pp. 232
Author(s):  
W. Chakritbudsabong ◽  
S. Pamonsupornvichit ◽  
L. Sariya ◽  
R. Pronarkngver ◽  
S. Chaiwattanarungruengpaisan ◽  
...  

Human induced pluripotent stem cells (iPSC) have been generated by reprogramming somatic cells using a cocktail of stem cell transcription factors but the application has been limited in transplantation therapies. The pig represents an ideal model for human clinical research, in part because of its similarity to human physiology and immunology but also because of its use in assessing side effects in long-term preclinical studies. Porcine induced pluripotent stem cells (piPSC) have been established in many studies but their differentiation pattern has not been reported. The aim of this study was to estimate the efficiency and pattern of differentiated piPSC into all 3 germ layers using embryoid body (EB) formation. Two piPSC lines (VSMUi001-A and VSMUi001-D) were induced from porcine embryonic fibroblasts by retroviral overexpression of 5 human reprogramming transcription factors (OCT4, SOX2, KLF4, c-MYC, and LIN28). For EB formation, the piPSC were harvested by treating with TrypLE™ Select (Thermo Fisher Scientific, Waltham, MA, USA) and the cells were cultured in nonadherent 96-well plates in piPSC media without growth factors. Data are expressed as mean ± SEM of at least 3 independent experiments. Statistical analyses were evaluated with Student t-tests for comparison between the 2 cell lines. Statistical significance was set at a P-value of < 0.05. The percentages of EB formation, which were calculated as the number of wells containing EB on Day 3 of differentiation, were 95.3 ± 3.42 and 89.1 ± 5.34 (VSMUi001-A and VSMUi001-D, respectively). However, there was no significant difference between the percentages of EB formation derived from the 2 cell lines. For EB size measurement, 20 EB per experiment were taken after incubation for 3, 7, 14, and 21 days. Both EB sizes increased over time (average diameter of 238.1 ± 6.18, 297.9 ± 4.10, 438.6 ± 13.33, and 728.8 ± 24.92 mm from VSMUi001-A, and 255.8 ± 5.12, 357.9 ± 3.94, 459.6 ± 11.88, and 439.4 ± 20.31 mm from VSMUi001-D). Moreover, both EB displayed homogeneity in size and shape (Day 3, 7), exhibited a cystic structure (Day 14), and a vesicular cavity was present (Day 21). For immunohistochemical analysis, both EB had lower levels of cleaved caspase 3, a marker of apoptotic cells, on Day 3 but higher levels of cleaved caspase 3 from Day 7 through 21. On the contrary, EB showed higher levels of Ki67, a marker of proliferating cells, on Day 3 but lower levels of Ki67 on Days 7, 14, and 21, respectively. In gene expression assessment, EB exhibited ectoderm gene (NeuroD1), mesoderm genes (TNNT2 and TNNI1), and endoderm genes (SOX17 and Endolase) at Day 7 and 21 by using RT-PCR. In conclusion, we report the successful in vitro formation of cystic EB from 2 piPSC lines, indicating that the piPSC could differentiate into 3 germ layers. This will allow researchers to unveil the roadmap of molecular cues needed for piPSC differentiation. This research project is supported by grants from the Mahidol University, Thailand.


Author(s):  
Yuvaraj S ◽  
B R Prashantha Kumar

: Peroxisome proliferator activated receptors (PPARs) are group of nuclear receptors and the ligand-activated intracellular transcription factors that are known to play a key role in physiological processes such as cell metabolism, proliferation, differentiation, tissue remodeling, inflammation, and atherosclerosis. However, in the past two decades, many reports claim that PPARs also play an imperious role as a tumor suppressor. PPAR- gamma (PPARγ), one of the best-known from the family of PPARs, is known to express in colon, breast, bladder, lung, and prostate cancer cells. Its function in tumour cells includes the modulation of several pathways involved in multiplication and apoptosis. The ligands of PPARγ act by PPARγ dependent as well as independent pathways and are also found to regulate different inflammatory mediators and transcription factors in systemic inflammation and in tumor microenvironment. Both synthetic and natural ligands that are known to activate PPARγ, suppress the tumor cell growth and multiplication through the regulation of inflammatory pathways, as found out from different functional assays and animal studies. Cancer and inflammation are interconnected process that are now being targeted to achieve tumor suppression by decreasing the risks and burden posed by cancer cells. Therefore, PPARγ can serve as a promising target for development of clinical drug molecule attenuating the proliferation of cancer cells. In this perspective, this mini review highlights the PPARγ as a potential target for drug development aiming for anti-inflammatory and thereby suppressing tumors.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Renwei Huang ◽  
Qunwen Pan ◽  
Xiaotang Ma ◽  
Yan Wang ◽  
Yaolong Liang ◽  
...  

Hepatic stellate cells (HSCs), previously described for liver-specific mesenchymal stem cells (MSCs), appear to contribute to liver regeneration. Microvesicles (MVs) are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP) or H2O2treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in culture medium were also assessed. Results showed that (1) HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2) HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3) HSC-MVs dose-dependently inhibited the APAP/H2O2induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury.


1999 ◽  
Vol 6 (9) ◽  
pp. 865-872 ◽  
Author(s):  
Tsuguteru Ohtsubo ◽  
Shinji Kamada ◽  
Toshiyuki Mikami ◽  
Hiroko Murakami ◽  
Yoshihide Tsujimoto

2006 ◽  
Vol 111 (4) ◽  
pp. 341-350 ◽  
Author(s):  
María Nieto-Bodelón ◽  
Gabriel Santpere ◽  
Benjamín Torrejón-Escribano ◽  
Berta Puig ◽  
Isidre Ferrer

Sign in / Sign up

Export Citation Format

Share Document