scholarly journals Knockdown of 60S Ribosomal Protein L14-2 Reveals Their Potential Regulatory Roles in Enhancing Drought and Salt Tolerance in Cotton

Author(s):  
Margaret shiraku ◽  
Richard Odongo Magwanga ◽  
Xiaoyan Cai ◽  
Joy Nyangasi Kirungu ◽  
Yanchao Xu ◽  
...  

Abstract BackgroundCotton is an important economic crop and the primary source of natural fiber. The effects of drought and salt stresses threaten strong fiber and large quantity production. However, due to the ever-changing climatic conditions, plants have evolved various mechanisms to cope with the effects of various stress factors. One of the plant's transcription factors with positive effects in alleviating effects of drought and salt stresses is the Ribosomal protein Large (RPL) gene families. This has prompted the functional characterization of the RPL14B gene previously identified in the QTL region as a candidate gene that responds to stress and initiates mechanisms that enhance stress tolerance. ResultsComprehensive identification and functional analysis were conducted in this study, in which 26, 8, and 5 proteins containing the RPL14B domain were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. Moreover, Cis-regulatory elements associated with the RPL genes were identified. The Myb binding sites (MBS), Myb, Abscisic acid-responsive element (ABRE), CAAT-box, TATA box, TGACG-motif, and CGTCA-motif responsive to Meja, and TCA- motif responsive to salicylic acid were identified. Validation of the candidate gene through virus-induced gene silencing (VIGS) revealed that the Gh_D01G0234 (RPL14B) knockdown significantly affected the cotton seedling's performance under drought/ salt stress conditions as evidenced by a significant reduction in various morphological and physiological traits. Moreover, antioxidant enzyme levels were significantly reduced in VIGS-plants, with substantially higher oxidant enzyme levels, as evidenced by the higher concentration level of Malondialdehyde (MDA). ConclusionThe results revealed the potential role of the gene, and it can be further exploited to breed climate-smart cotton varieties resilient to drought and salt stress conditions

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Margaret Linyerera SHIRAKU ◽  
Richard Odongo MAGWANGA ◽  
Xiaoyan CAI ◽  
Joy Nyangasi KIRUNGU ◽  
Yanchao XU ◽  
...  

Abstract Background Cotton is a valuable economic crop and the main significant source of natural fiber for textile industries globally. The effects of drought and salt stress pose a challenge to strong fiber and large-scale production due to the ever-changing climatic conditions. However, plants have evolved a number of survival strategies, among them is the induction of various stress-responsive genes such as the ribosomal protein large (RPL) gene. The RPL gene families encode critical proteins, which alleviate the effects of drought and salt stress in plants. In this study, comprehensive and functional analysis of the cotton RPL genes was carried out under drought and salt stresses. Results Based on the genome-wide evaluation, 26, 8, and 5 proteins containing the RPL14B domain were identified in Gossypium hirsutum, G. raimondii, and G. arboreum, respectively. Furthermore, through bioinformatics analysis, key cis-regulatory elements related to RPL14B genes were discovered. The Myb binding sites (MBS), abscisic acid-responsive element (ABRE), CAAT-box, TATA box, TGACG-motif, and CGTCA-motif responsive to methyl jasmonate, as well as the TCA-motif responsive to salicylic acid, were identified. Expression analysis revealed a key gene, Gh_D01G0234 (RPL14B), with significantly higher induction levels was further evaluated through a reverse genetic approach. The knockdown of Gh_D01G0234 (RPL14B) significantly affected the performance of cotton seedlings under drought/salt stress conditions, as evidenced by a substantial reduction in various morphological and physiological traits. Moreover, the level of the antioxidant enzyme was significantly reduced in VIGS-plants, while oxidant enzyme levels increased significantly, as demonstrated by the higher malondialdehyde concentration level. Conclusion The results revealed the potential role of the RPL14B gene in promoting the induction of antioxidant enzymes, which are key in oxidizing the various oxidants. The key pathways need to be investigated and even as we exploit these genes in the developing of more stress-resilient cotton germplasms.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Meixia Liang ◽  
Yachao Gao ◽  
Tingting Mao ◽  
Xiaoyan Zhang ◽  
Shaoying Zhang ◽  
...  

The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.


Author(s):  
Banu Kadioğlu

Background: Stress factors are one of the elements that affect yield in agricultural production and salinity stress is one of the most important stress factors. Pea is an important source of nutrient for human nutrition, as well as a very important legume plant that used as animal feed. Methods: The experiment, which was set up according to factorial arrangement in random plots, was carried out with 10 replications and a forage pea line was used. Seven different (0, 50, 100, 150, 200, 250 and 300%) salt concentrations and two different bacterial strains (Bacillus sp. and Arthrobacter agilis) were used in the study. In the study, the effects of different bacterial strains on germination percentage (%), germination rate (days), average daily germination (%), peak value (%) and germination value (%) in pea line exposed to salt were investigated. Result: In the study, it was found that bacterial applications in salt stress were statistically significant in all parameters. It was determined that Bacillus sp. strain was more effective for germination percentage and germination rate. 50 mM salt + bacteria applications of the studied genotype and Bacillus sp. and Arthrobacter agilis strains were found to have positive effects on seed germination biology under salt stress.


2016 ◽  
Vol 14 (3) ◽  
pp. 499-505 ◽  
Author(s):  
Nguyễn Thị Thúy Quỳnh ◽  
Nguyễn Huy Hoàng ◽  
Hao Jen Hoang

The Leucine-rich repeat receptor-like kinase (LRR-RLK), that is a receptor-like kinase consists of leucine rich repeat fragments, plays an important role in the plant growth and development as well as enhancing resistance ability against environmental stress factors. LRR-RLR promoter has been studied to increasing gene expression during stress conditions the stress conditions with salt, paraquat… However, no report has been studied on activity of LRR-RLK promoter in Arsenic (As) stress. Arabidopsis is a genome sequenced-model plant and has been widely used in the studies of important traits. In this study, LRR-RLK promoter was isolated from Arabidopsis, and constructed in plant expression vector pCAMBIA1304. In which, LRR-RLK VIII promoter drives the activity of GUS (beta-glucuronidase) gene. The functional regions of the LRR-RLK VIII promoter were determined and exposed some important regulatory elements such as W-box and ABRE using the database of Cis-acting Data Plan Regulatory DNA Elements (PLACE). Using the histochemical staining hypocotyls of T1 transgenic plant with X-gluc subtrate indicated that LRR-RLK VIII promoter driven activity of GUS gene is tissue-specific in tissue vessel and hypocotyls of T1 during As stress. The increase expression of LRR-RLK VIII gene in transgenic leaves under As stress compare to control ones were also observed by RT-PCR technique.


2016 ◽  
Vol 42 (12) ◽  
pp. 1764 ◽  
Author(s):  
Sheng-Hui ZHOU ◽  
Qiu-Hong WU ◽  
Jing-Zhong XIE ◽  
Jiao-Jiao CHEN ◽  
Yong-Xing CHEN ◽  
...  

Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


Sign in / Sign up

Export Citation Format

Share Document