scholarly journals Identification of Kinesin Family Member 2A (KIF2A) as a Promising Therapeutic Target for Osteosarcoma

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhe-Xiang Wang ◽  
Shao-Chun Ren ◽  
Zi-Song Chang ◽  
Jing Ren

Background. Osteosarcoma is known as a type of common human bone malignancy, and more therapeutic targets are still required to combat this disease. In recent years, the involvement of KIF2A in cancer progression has been widely revealed; however, its potential effect on osteosarcoma development remains unknown. This study is to assess the KIF2A expression levels in human osteosarcoma tissues and explore its potential role in osteosarcoma development. Methods. Immunohistochemical (IHC) assays were conducted to evaluate the expression levels of KIF2A in a total of 74 samples of osteosarcoma tissues and adjacent nontumor tissues. According to the staining intensity in tumor tissues, patients were divided into highly expressed and low expression KIF2A groups. The possible links between the KIF2A expression and the clinical pathological features were explored and analyzed, and the effects of KIF2A on osteosarcoma cell proliferation, migration, and invasion were detected through colony formation assay, MTT assay, wound closure assay, and transwell assay, respectively. The effects of KIF2A on tumor growth and metastasis were detected by the use of animal models. Results. KIF2A was highly expressed in human osteosarcoma tissues. Meanwhile, KIF2A was obviously correlated to the tumor size ( P = 0.001 ∗ ) and clinical stage ( P = 0.014 ∗ ) of osteosarcoma patients. Our results also revealed that the ablation of KIF2A dramatically blocked the proliferation, migration, and invasion capacity of osteosarcoma cells in vitro and blocked tumor growth and metastasis in mice. Conclusions. We investigated the involvement of KIF2A in the development and metastasis of osteosarcoma and therefore thought KIF2A as a promising therapeutic target for osteosarcoma treatment.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Tao Chen ◽  
Fu-Kuan Zhong

Objective. To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. Methods. Immunohistochemical assays were performed to explore the expression levels of KIF18A in 82 samples of lung adenocarcinoma and corresponding normal tissues. According to the levels of KIF18A expression in lung adenocarcinoma tissue samples, patients were classified into the KIF18A high expression group and low expression group. Clinical data related to the perioperative clinical features (age, gender, smoking, tumor size, differentiation, clinical stage, and lymph node metastasis), the potential correlation between KIF18A expression levels, and clinical features were analyzed, and the effects of KIF18A on lung adenocarcinoma cell proliferation, migration, and invasion were measured by colony formation assay, MTT assay, wound healing assay, and transwell assays. The possible effects of KIF18A on tumor growth and metastasis were measured in mice through tumor growth and tumor metastasis assays in vivo. Results. KIF18A in lung adenocarcinoma tissues. Further, KIF18A was significantly associated to clinical characteristic features including the tumor size (P=0.033) and clinical stage (P=0.041) of patients with lung adenocarcinoma. Our data also investigated that KIF18A depletion dramatically impairs the proliferation, migration, and invasion capacity of lung adenocarcinoma cells in vitro and inhibits tumor growth and metastasis in mice. Conclusions. Our study reveals the involvement of KIF18A in the progression and metastasis of lung adenocarcinoma and provides a novel therapeutic target for the treatment of lung adenocarcinoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Sheng ◽  
Weixi Guo ◽  
Fang Lu ◽  
Hongming Liu ◽  
Rongmu Xia ◽  
...  

Lung cancer (LC) is a malignant tumor with the highest incidence and mortality rates worldwide. Linc00284, a long non-coding RNA, is a newly discovered regulator of LC. This study aimed to explore the role of Linc00284 in LC progression. Gene expression levels were detected by RT-qPCR and/or western blot analysis. Cell migratory and invasive capabilities were measured by wound healing and transwell assays. Subcutaneous xenograft models were constructed to examine tumor growth of LC cells. Data showed that Linc00284 was significantly upregulated in LC tissues compared to adjacent normal lung tissues and predicted poor prognosis in patients with LC. In vitro, Linc00284 was highly expressed in LC cells and was mainly localized in the cytoplasm. Mechanistically, Linc00284 directly bound to miR-205-3p, leading to the upregulation of c-Met expression. A significant negative correlation was observed between Linc00284 and miR-205-3p expression levels, and the Linc00284 level was positively correlated with the c-Met expression. Linc00284/miR-205-3p/c-Met regulatory axis promotes LC cell proliferation, migration, and invasion. Furthermore, the in vivo results indicated that Linc00284 knockdown markedly suppressed tumor growth. Taken together, these data suggest that Linc00284 facilitates LC progression by targeting the miR-205-3p/c-Met axis, which may be a potential target for LC treatment.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhi-Ying Qi ◽  
Fang Wang ◽  
Ying-Ying Yue ◽  
Xue-Wang Guo ◽  
Rui-Meng Guo ◽  
...  

AbstractOvarian cancer (OC) is a type of gynaecological malignancy with high mortality in females. Serous ovarian cancer (SOC) is a distinct subtype of OC with poor early diagnosis. Given the limitations of traditional therapies, such as chemotherapy, targeted treatment is therefore a promising therapy to improve the survival rate of SOC patients. Cyclophilin A (CYPA) is a member of Cyclophilin family and thought to participates in multiple cellular processes such as cell transduction and immune modulation. Recently, various of studies indicated that CYPA has critical impact on cancer progression. CYPA could regulate cell proliferation, invasion, and chemoresistance of multiple types of cancers. However, it is still unclear whether it could affect ovarian cancer. In this study, we demonstrated that CYPA was highly expressed in SOC tissues compared with adjacent tissues. Further, CYPA was significantly associated with clinical stage and lymphnode metastasis of SOC patients. Additionally, data indicated that knockdown of CYPA by its shRNA dramatically reduces migration and invasion capacity of SOC cells in vitro and blocks tumor metastasis in vivo. Our study investigates the involvement of CYPA in the progression and metastasis of SOC, and therefore provides CYPA as a promising therapeutic target for SOC treatment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kosuke Higuchi ◽  
Shinichi Sakamoto ◽  
Keisuke Ando ◽  
Maihulan Maimaiti ◽  
Nobushige Takeshita ◽  
...  

AbstractLarge neutral amino acid transporter 1 (LAT1, SLC7A5) is abundantly expressed in various types of cancer, and it has been thought to assist cancer progression through its activity for uptake of neutral amino acids. However, the roles of LAT1 in renal cell carcinoma (RCC) prognosis and treatment remain uncharacterized. Therefore, we first retrospectively examined the LAT1 expression profile and its associations with clinical factors in RCC tissues (n = 92). The results of immunohistochemistry showed that most of the tissues examined (92%) had cancer-associated LAT1 expression. Furthermore, the overall survival (OS) and progression-free survival (PFS) were shorter in patients with high LAT1 expression levels than in those with low LAT1 expression levels (P = 0.018 and 0.014, respectively), and these associations were further strengthened by the results of univariate and multivariate analyses. Next, we tested the effects of JPH203, which is a selective LAT1 inhibitor, on RCC-derived Caki-1 and ACHN cells. It was found that JPH203 inhibited the growth of these cell types in a dose-dependent manner. Moreover, JPH203 clearly suppressed their migration and invasion activities. Thus, our results show that LAT1 has a great potential to become not only a prognosis biomarker but also a therapeutic target in RCC clinical settings.


2019 ◽  
Vol 133 (13) ◽  
pp. 1457-1473 ◽  
Author(s):  
Xina Xie ◽  
Jiatian Lin ◽  
Jianlan Liu ◽  
Meihui Huang ◽  
Yuantang Zhong ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) play important roles in tumorigenesis and cancer progression. The orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) acts as an oncogene, and is involved in colorectal cancer (CRC) development. However, the mechanism through which lncRNA regulates NR4A1 expression remains unknown. We aimed to identify lncRNAs that regulate NR4A1 and assess their underlying mechanisms in CRC. We first identified an antisense lncRNA of NR4A1 that was up-regulated in CRC tissues and cells with rapid amplification of cDNA ends (RACE), and designated it as NR4A1AS. Spearman correlation analysis showed that NR4A1AS was positively correlated with NR4A1 mRNA levels in 37 CRC tissues. Mechanistically, NR4A1AS stabilized NR4A1 mRNA by forming RNA–RNA complexes via partial base-pairing and up-regulated NR4A1 expression in CRC cells. RNA immunoprecipitation (RIP) assays revealed that knockdown of NR4A1AS expression by siRNA enhanced up-frameshift 1 (UPF1) recruitment to NR4A1 mRNA, thereby decreasing NR4A1 mRNA stability. Moreover, depletion of NR4A1AS was found to mimic the effect of NR4A1 knockdown, specifically by suppressing cell proliferation, migration and invasion, and inducing apoptosis and cell cycle arrest. Accordingly, restoring NR4A1 expression ameliorated the effects of NR4A1AS knockdown on tumor growth and metastasis of CRC cells in vitro and in vivo. Thus, we conclude that NR4A1AS up-regulates NR4A1 expression by forming RNA–RNA complexes and blocking UPF1-mediated mRNA destabilization, and it functions in tumor growth and metastasis of CRC cells at least partly through regulating NR4A1, suggesting that NR4A1AS might be as a potential target for RNA-based anti-CRC drug studies.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2021 ◽  
Vol 7 (5) ◽  
pp. 3997-4004
Author(s):  
Zhibo Zou ◽  
Lin Peng

Objective: This study aimed to probe into the effect of LncRNA SNHG14 on ovarian cancer progression by regulating miR-206.Methods: Fifty-seven ovarian cancer (OC) patients who were treated in our hospital from December 2017 to December 2019 were collected as the research objects. During the operation, OC tissues and paracancerous tissues of patients were collected, and the effect of SNHG14 on OC tumor growth in nude mice was detected, and SNHG14 inhibitor was transfected into OC cells. The relative expression of SNHG14 in tissues and cells was detected by qRT-PCR, cell proliferation was testedvia CCK8, migration and invasion were detected through Transwell, apoptosis was assessedvia flow cytometry, and the targeted relationship between SNHG14 and miR-206 was detected by dual luciferase reporter gene.Results: SNHG14 is highly expressed in OC tissues, cells and nude mice. Down-regulating it can inhibit the biological ability of OC cells and inhibit the growth of nude mice tumors. It can directly target miR-206 to regulate CCND1 expression and promote OC progression.Conclusion: LncRNA SNHG14 can act as miR-206 sponge to regulate CCND1 expression downstream of miR-206 and promote OC progression.


2014 ◽  
Vol 7 ◽  
pp. CGM.S14501 ◽  
Author(s):  
Patrick C. Hackler ◽  
Sarah Reuss ◽  
Raymond L. Konger ◽  
Jeffrey B. Travers ◽  
Ravi P. Sahu

Pro-oxidative stressors including cigarette smoke (CS) generate novel lipids with platelet-activated factor-receptor (PAF-R) agonistic activity mediate systemic immunosuppression, one of the most recognized events in promoting carcinogenesis. Our previous studies have established that these oxidized-PAF-R-agonists augment murine B16F10 melanoma tumor growth in a PAF-R-dependent manner because of its effects on host immunity. As CS generates PAF-R agonists, the current studies sought to determine the impact of PAF-R agonists on lung cancer growth and metastasis. Using the murine Lewis Lung Carcinoma (LLC1) model, we demonstrate that treatment of C57BL/6 mice with a PAF-R agonist augments tumor growth and lung metastasis in a PAF-R-dependent manner as these findings were not seen in PAF-R-deficient mice. Importantly, this effect was because of host rather than tumor cells PAF-R dependent as LLC1 cells do not express functional PAF-R. These findings indicate that experimental lung cancer progression can be modulated by the PAF system.


Author(s):  
Jia Wen ◽  
Yi Xie ◽  
Yingqiang Zhang ◽  
Jiazhen Li ◽  
Jiaping Li ◽  
...  

Osteosarcoma (OS) is the most prevalent human bone malignancy, and presents a global annual morbidity of approximately five cases per million. Notably, precise and efficient targeted therapy has become the most promising strategy for the treatment of OS; however, there is still an urgent need for the identification of suitable therapeutic targets. Metastasis-associated in colon cancer 1 (MACC1) was first identified in colon tumors by differential display RT-PCR, and was shown to be involved in the regulation of colon tumor growth and metastasis through the hepatocyte growth factor (HGF)/c-Met signaling pathway. Additionally, MACC1 overexpression has been reported to induce the growth of several types of cancers, including glioblastoma multiforme and gastric cancer. However, whether MACC1 also plays a role in the progression of OS remains unclear. In this study, we found that MACC1 was highly expressed in human OS tissues, as well as in U-2OS and MG-63 cells, when compared with normal tissues and osteoblasts, respectively. Our data further indicated that MACC1 expression was correlated with several clinicopathological features of OS. Through in vitro assays, we found that MACC1 depletion markedly suppressed the proliferative ability of both OS cells and endothelial cells, and inhibited the angiogenic capacity of endothelial cells. Similarly, MACC1 depletion inhibited tumor growth, metastasis, and angiogenesis in mice. Mechanistically, we found that MACC1 could bind to the MET promoter, and enhanced the proliferation of both OS cells and endothelial cells through the HGF/c-Met signaling pathway. Furthermore, we show that MACC1 also promoted angiogenesis by regulating microtubule dynamics, thereby promoting the progression of OS. Our results indicate that MACC1 may be a new and promising therapeutic target for the treatment of OS.


Endocrinology ◽  
2021 ◽  
Author(s):  
Amy E Baek ◽  
Natalia Krawczynska ◽  
Anasuya Das Gupta ◽  
Svyatoslav Victorovich Dvoretskiy ◽  
Sixian You ◽  
...  

Abstract Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite, 27-hydroxycholesterol (27HC), as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and a liver x receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells, with neutrophils (PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that include exosomes. The resulting EVs had a size distribution that was skewed slightly larger, compared to EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across three different subtypes: primary murine PMNs, RAW264.7 monocytic cells and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in two different syngeneic models, demonstrating the potential role of 27HC induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their pro-tumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Sign in / Sign up

Export Citation Format

Share Document