scholarly journals Extracellular Vesicles Derived fromAcholeplasma laidlawiiPG8

2011 ◽  
Vol 11 ◽  
pp. 1120-1130 ◽  
Author(s):  
Vladislav M. Chernov ◽  
Olga A. Chernova ◽  
Alexey A. Mouzykantov ◽  
Irina R. Efimova ◽  
Gulnara F. Shaymardanova ◽  
...  

Extracellular vesicle production is believed to be a ubiquitous process in bacteria, but the data on such a process in Mollicutes are absent. We report the isolation of ultramicroforms – extracellular vesicles from supernatants ofAcholeplasma laidlawiiPG8 (ubiquitous mycoplasma; the main contaminant of cell culture). Considering sizes, morphology, and ultrastructural organization, the ultramicroforms ofA. laidlawiiPG8 are similar to membrane vesicles of Gram-positive and Gram-negative bacteria. We demonstrate thatA. laidlawiiPG8 vesicles contain genetic material and proteins, and are mutagenic to lymphocytes of human peripheral blood. We show thatMycoplasma gallisepticumS6, the other mycoplasma, also produce similar structures, which suggests that shedding of the vesicles might be the common phenomenon in Mollicutes. We found that the action of stress conditions results in the intensive formation of ultramicroforms in mycoplasmas. The role of vesicular formation in mycoplasmas remains to be studied.

2019 ◽  
Vol 6 (1) ◽  
pp. 7 ◽  
Author(s):  
Thomas Hartjes ◽  
Serhii Mytnyk ◽  
Guido Jenster ◽  
Volkert van Steijn ◽  
Martin van Royen

Extracellular vesicles (EVs) are a family of small membrane vesicles that carry information about cells by which they are secreted. Growing interest in the role of EVs in intercellular communication, but also in using their diagnostic, prognostic and therapeutic potential in (bio) medical applications, demands for accurate assessment of their biochemical and physical properties. In this review, we provide an overview of available technologies for EV analysis by describing their working principles, assessing their utility in EV research and summarising their potential and limitations. To emphasise the innovations in EV analysis, we also highlight the unique possibilities of emerging technologies with high potential for further development.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1200 ◽  
Author(s):  
Allen Caobi ◽  
Madhavan Nair ◽  
Andrea D. Raymond

Most cells can release extracellular vesicles (EVs), membrane vesicles containing various proteins, nucleic acids, enzymes, and signaling molecules. The exchange of EVs between cells facilitates intercellular communication, amplification of cellular responses, immune response modulation, and perhaps alterations in viral pathogenicity. EVs serve a dual role in inhibiting or enhancing viral infection and pathogenesis. This review examines the current literature on EVs to explore the complex role of EVs in the enhancement, inhibition, and potential use as a nanotherapeutic against clinically relevant viruses, focusing on neurotropic viruses: Zika virus (ZIKV) and human immunodeficiency virus (HIV). Overall, this review’s scope will elaborate on EV-based mechanisms, which impact viral pathogenicity, facilitate viral spread, and modulate antiviral immune responses.


2020 ◽  
Author(s):  
Nicolas Baeza ◽  
Elena Mercade

Abstract Biofilms offer a safe environment that favors bacterial survival; for this reason, most pathogenic and environmental bacteria live integrated in biofilm communities. The development of biofilms is complex and involves many factors, which need to be studied in order to understand bacterial behavior and control biofilm formation when necessary. We used a collection of cold-adapted Antarctic Gram-negative bacteria to study whether their ability to form biofilms is associated with a capacity to produce membrane vesicles and secrete extracellular ATP. In most of the studied strains, no correlation was found between biofilm formation and these two factors. Only Shewanella vesiculosa M7T secreted high levels of extracellular ATP, and its membrane vesicles caused a significant increase in the speed and amount of biofilm formation. In this strain, an important portion of the exogenous ATP was contained in membrane vesicles, where it was protected from apyrase treatment. These results confirm that ATP influences biofilm formation. Although the role of extracellular ATP in prokaryotes is still not well understood, the metabolic cost of its production suggests it has an important function, such as a role in biofilm formation. Thus, the liberation of extracellular ATP through membrane vesicles and its function deserve further study.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Vladislav M. Chernov ◽  
Olga A. Chernova ◽  
Alexey A. Mouzykantov ◽  
Natalija B. Baranova ◽  
Oleg V. Gorshkov ◽  
...  

For the first time, the phytopathogenicity of extracellular vesicles ofAcholeplasma laidlawiiPG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses) inOryza sativaL. plants was studied. Data on the ability of extracellular vesicles ofAcholeplasma laidlawiiPG8 to penetrate from the nutrient medium into overground parts ofOryza sativaL. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium withA. laidlawiiPG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles ofAcholeplasma laidlawiiPG8 allowed a possibility to use PCR (with the following sequencing) to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.


2019 ◽  
Vol 127 (2) ◽  
pp. 645-653 ◽  
Author(s):  
Ivan J. Vechetti

Extracellular vesicles (EVs) were initially characterized as “garbage bags” with the purpose of removing unwanted material from cells. It is now becoming clear that EVs mediate intercellular communication between distant cells through a transfer of genetic material, a process important to the systemic adaptation in physiological and pathological conditions. Although speculative, it has been suggested that the majority of EVs that make it into the bloodstream would be coming from skeletal muscle, since it is one of the largest organs in the human body. Although it is well established that skeletal muscle secretes peptides (currently known as myokines) into the bloodstream, the notion that skeletal muscle releases EVs is in its infancy. Besides intercellular communication and systemic adaptation, EV release could represent the mechanism by which muscle adapts to certain stimuli. This review summarizes the current understanding of EV biology and biogenesis and current isolation methods and briefly discusses the possible role EVs have in regulating skeletal muscle mass.


2019 ◽  
Vol 20 (19) ◽  
pp. 4813 ◽  
Author(s):  
Sevindzh Kletukhina ◽  
Olga Neustroeva ◽  
Victoria James ◽  
Albert Rizvanov ◽  
Marina Gomzikova

Epithelial–mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.


2015 ◽  
Vol 18 (3) ◽  
pp. 396 ◽  
Author(s):  
Mustafa Kotmakçı ◽  
Vildan Bozok Çetintaş

A new platform for drug, gene and peptide-protein delivery is emerging, under the common name of “extracellular vesicles”. Extracellular vesicles (EVs) are 30-1000 nm-sized cell-derived, liposome-like vesicles. Current research on EVs as nano-delivery systems for small-molecule drugs and genetic material, reveal that these tiny, biologically-derived vesicles carry a great potential to boost the efficacy of many therapeutic protocols. Several features of EVs; from efficacy to safety, from passive to active targeting ability, the opportunity to be biologically or chemically labelled, and most importantly, their eobiotic origin make them promising candidate for development of the next generation personalized nanomedicines. The aim of this article is to provide a view on the current research in which EVs are used as drug/genetic material delivery systems. Their application areas, drug loading and targeting strategies, and biodistribution properties are discussed.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2011 ◽  
Vol 68 (16) ◽  
pp. 2667-2688 ◽  
Author(s):  
Bence György ◽  
Tamás G. Szabó ◽  
Mária Pásztói ◽  
Zsuzsanna Pál ◽  
Petra Misják ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Fu-Xing-Zi Li ◽  
Xiao Lin ◽  
Feng Xu ◽  
Su-Kang Shan ◽  
Bei Guo ◽  
...  

Mesenchymal stromal cells (MSCs) are applied in regenerative medicine of several tissues and organs nowadays by virtue of their self-renewal capabilities, multiple differentiation capacity, potent immunomodulatory properties, and their ability to be favourably cultured and manipulated. With the continuous development of “cell-free therapy” research, MSC-derived small extracellular vesicles (MSC-sEVs) have increasingly become a research hotspot in the treatment of various diseases. Small extracellular vesicles (SEVs) are membrane vesicles with diameters of 30 to 150 nm that mediate signal transduction between adjacent or distal cells or organs by delivering non-coding RNA, protein, and DNA. The contents and effects of sEVs vary depending on the properties of the originating cell. In recent years, MSC-sEVs have been found to play an important role in the occurrence and development of diabetes mellitus as a new way of communication between cells. Diabetes mellitus is a common metabolic disease in clinic. Its complications of the heart, brain, kidney, eyes, and peripheral nerves are a serious threat to human health and has been a hot issue for clinicians. MSC-sEVs could be applied to repair or prevent damage from the complications of diabetes mellitus through anti-inflammatory effects, reduction of endoplasmic reticulum-related protein stress, polarization of M2 macrophages, and increasing autophagy. Therefore, we highly recommend that MSC-sEVs-based therapies to treat diabetes mellitus and its chronic complication be further explored. The analysis of the role and molecular mechanisms of MSC-sEVs in diabetes and its related complications will provide new idea and insights for the prevention and treatment of diabetes.


2020 ◽  
Vol 21 (23) ◽  
pp. 9111
Author(s):  
José Antonio López-Guerrero ◽  
Inés Ripa ◽  
Sabina Andreu ◽  
Raquel Bello-Morales

It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.


Sign in / Sign up

Export Citation Format

Share Document