scholarly journals Recurrent Germline Mutations of CHEK2 as a New Susceptibility Gene in Patients with Pheochromocytomas and Paragangliomas

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yinjie Gao ◽  
Chao Ling ◽  
Xiaosen Ma ◽  
Huiping Wang ◽  
Yunying Cui ◽  
...  

Purpose. Recently, pheochromocytomas and paragangliomas (PPGLs) have been strongly suspected as hereditary tumors, as approximately 40% of patients carry germline mutations. In the cancers where defects occur to corrupt DNA repair and facilitate tumorigenesis, a CHEK2 strong association has been observed. Therefore, the purpose of this study was to investigate the effect of CHEK2 mutations for its possible pathogenicity in PPGLs. Methods. Four patients with CHEK2 mutations were recruited, as previously detected by the whole exome sequencing. Sanger sequencing was used to verify the germline mutations as well as the loss of heterozygosities (LOHs) in their somatic DNAs. Immunohistochemistry was used to analyze the expression of CHEK2 and its downstream target p53 Ser20 (phosphorylated p53). Results. The average age of studied patients was 44.25 ± 11.18 years, at the time diagnosis. One patient had multiple tumors which recurred quickly, while two patients had distant metastasis. None of the patient had any relevant family history. Four germline CHEK2 mutations were identified (c.246_260del; c.715G > A; c.1008+3A > T; and c.1111C > T). All the patients were predicted to have either pathogenic or suspected pathogenic mutations. There was no LOH of CHEK2 gene in somatic DNAs found. Additionally, neither CHEK2 proteins nor its downstream target p53 Ser20 were expressed in the tumor tissues. The inactivation of CHEK2 leads to the decrease in the p53 phosphorylation, which might promote tumorigenesis. Conclusions. For the first time, CHEK2 was identified as a susceptibility gene for PPGLs. However, the penetrance of CHEK2 gene with genotype-phenotype correlation needs to be investigated.

2020 ◽  
Vol 113 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Barbara A Conley ◽  
Lou Staudt ◽  
Naoko Takebe ◽  
David A Wheeler ◽  
Linghua Wang ◽  
...  

Abstract Background Tumor molecular profiling from patients experiencing exceptional responses to systemic therapy may provide insights into cancer biology and improve treatment tailoring. This pilot study evaluates the feasibility of identifying exceptional responders retrospectively, obtaining pre-exceptional response treatment tumor tissues, and analyzing them with state-of-the-art molecular analysis tools to identify potential molecular explanations for responses. Methods Exceptional response was defined as partial (PR) or complete (CR) response to a systemic treatment with population PR or CR rate less than 10% or an unusually long response (eg, duration >3 times published median). Cases proposed by patients’ clinicians were reviewed by clinical and translational experts. Tumor and normal tissue (if possible) were profiled with whole exome sequencing and, if possible, targeted deep sequencing, RNA sequencing, methylation arrays, and immunohistochemistry. Potential germline mutations were tracked for relevance to disease. Results Cases reflected a variety of tumors and standard and investigational treatments. Of 520 cases, 476 (91.5%) were accepted for further review, and 222 of 476 (46.6%) proposed cases met requirements as exceptional responders. Clinical data were obtained from 168 of 222 cases (75.7%). Tumor was provided from 130 of 168 cases (77.4%). Of 117 of the 130 (90.0%) cases with sufficient nucleic acids, 109 (93.2%) were successfully analyzed; 6 patients had potentially actionable germline mutations. Conclusion Exceptional responses occur with standard and investigational treatment. Retrospective identification of exceptional responders, accessioning, and sequencing of pretreatment archived tissue is feasible. Data from molecular analyses of tumors, particularly when combining results from patients who received similar treatments, may elucidate molecular bases for exceptional responses.


Human Cell ◽  
2021 ◽  
Author(s):  
Chenye Tang ◽  
Yuntao Wu ◽  
Xiao Wang ◽  
Kean Chen ◽  
Zhiling Tang ◽  
...  

AbstractMAFG-AS1 is an oncogenic lncRNA in multiple types of cancer. However, its role in bladder cancer (BC) remains unclear. The present study aimed to investigate the function of MAFG-AS1 in BC. BC and paired non-tumor tissues were collected. Two BC cell lines HT01197 and HT-1376 were used. Dual luciferase activity assay, RT-qPCR, western blot, CCK-8, transwell invasion assay, and wound healing assay were performed. We found that MAFG-AS1 was significantly up-regulated in BC tissues and predicted a poor survival rate. MAFG-AS1 interacted with miR-125b-5p. However, the expression levels of MAFG‑AS1 and miR-125b-5p were not obviously correlated in BC tissues, and MAFG‑AS1 and miR-125b-5p did not regulate the expression of each other. Interestingly, we found that SphK1, a downstream target of miR-125b-5p, was negatively correlated with miR-125b-5p, while it was positively correlated with MAFG-AS1 across BC tissues. In addition, overexpression of MAFG‑AS1 upregulated the expression of SphK1 in BC cells, and attenuated the inhibitory effects of miR-125b-5p on the expression of SphK1. Functional assays showed that overexpression of MAFG‑AS1 promoted BC cell proliferation, migration, and invasion, while its effects were attenuated by overexpression of miR-125b-5p. Moreover, overexpression of miR-125b-5p inhibited BC cell proliferation, migration, and invasion, while its effects were alleviated by overexpression of SphK1. Taken together, our findings demonstrated that MAFG-AS1 has an oncogenic role in BC by regulating the miR-125b-5p/SphK1 axis. MAFG-AS1 might serve as a good diagnostic marker and a potential therapeutic target of BC.


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii22-ii22
Author(s):  
Yoshiki Arakawa ◽  
Junko Suga ◽  
Yukinori Terada ◽  
Kohei Nakajima ◽  
Masahiro Tanji ◽  
...  

Abstract Objective: Kyoto University Hospital has introduced the cancer genomic profiling tests, Oncoprime in 2015, Guardant360 in 2018, which are not under insurance coverage, FoundationOne CDx(F1CDx) and OncoGuide NCC Oncopanel system(NCC OP) in 2019, which received approval for insurance coverage for the first time in Japan. We investigated the results of cancer genomic profiling test under insurance coverage in our hospital. Methods: A special facility for the cancer genomic profiling tests was produced. To perform the cancer genomic profiling test, an outpatient must visit the facility three times (learning, ordering of the test, and getting the results). The expert panels decide the final test results and treatment options with the all information of the patients. Results: From November 2019 to March 2020, 51 and 9 patients were tested with F1CDx and NCC OP, respectively. 16 patients (31%) of F1CDX and 2 patients (22%) of NCC OP got treatment recommendations from the expert panels. However, only 5 patients (9.8%) of F1CDX and 1 patient (11%) of NCC OP received the treatments. The secondary finding suspecting germline mutations was found in 8 patients of F1CDX. Conclusion: After the approval the cancer genomic profiling tests with insurance coverage in Japan, it becomes easy for the patients to perform the test and get the genetic information of the tumor. However, it remains not easy to receive the recommended drugs because of several limitations of their usages.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2403
Author(s):  
Chenghui Zhou ◽  
Zhefang Wang ◽  
Jiahui Li ◽  
Xiaolin Wu ◽  
Ningbo Fan ◽  
...  

Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3 overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3 attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production. Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.


Author(s):  
Juan Chen ◽  
Yan Li ◽  
Jianlei Wu ◽  
Yakun Liu ◽  
Shan Kang

Abstract Background Malignant ovarian germ cell tumors (MOGCTs) are rare and heterogeneous ovary tumors. We aimed to identify potential germline mutations and somatic mutations in MOGCTs by whole-exome sequencing. Methods The peripheral blood and tumor samples from these patients were used to identify germline mutations and somatic mutations, respectively. For those genes corresponding to copy number alterations (CNA) deletion and duplication region, functional annotation of was performed. Immunohistochemistry was performed to evaluate the expression of mutated genes corresponding to CNA deletion region. Results In peripheral blood, copy number loss and gain were mostly found in yolk sac tumors (YST). Moreover, POU5F1 was the most significant mutated gene with mutation frequency > 10% in both CNA deletion and duplication region. In addition, strong cytoplasm staining of POU5F1 (corresponding to CNA deletion region) was found in 2 YST and nuclear staining in 2 dysgerminomas (DG) tumor samples. Genes corresponding to CNA deletion region were significantly enriched in the signaling pathway of regulating pluripotency of stem cells. In addition, genes corresponding to CNA duplication region were significantly enriched in the signaling pathways of RIG-I-like receptor, Toll-like receptor, NF-kappa B and Jak–STAT. KRT4, RPL14, PCSK6, PABPC3 and SARM1 mutations were detected in both peripheral blood and tumor samples. Conclusions Identification of potential germline mutations and somatic mutations in MOGCTs may provide a new field in understanding the genetic feature of the rare biological tumor type in the ovary.


2017 ◽  
Vol 24 (10) ◽  
pp. T195-T208 ◽  
Author(s):  
Rami Alrezk ◽  
Fady Hannah-Shmouni ◽  
Constantine A Stratakis

Multiple endocrine neoplasia (MEN) refers to a group of autosomal dominant disorders with generally high penetrance that lead to the development of a wide spectrum of endocrine and non-endocrine manifestations. The most frequent among these conditions is MEN type 1 (MEN1), which is caused by germline heterozygous loss-of-function mutations in the tumor suppressor geneMEN1. MEN1 is characterized by primary hyperparathyroidism (PHPT) and functional or nonfunctional pancreatic neuroendocrine tumors and pituitary adenomas. Approximately 10% of patients with familial or sporadic MEN1-like phenotype do not haveMEN1mutations or deletions. A novel MEN syndrome was discovered, initially in rats (MENX), and later in humans (MEN4), which is caused by germline mutations in the putative tumor suppressorCDKN1B. The most common phenotype of the 19 established cases of MEN4 that have been described to date is PHPT followed by pituitary adenomas. Recently, somatic or germline mutations inCDKN1Bwere also identified in patients with sporadic PHPT, small intestinal neuroendocrine tumors, lymphoma and breast cancer, demonstrating a novel role forCDKN1Bas a tumor susceptibility gene for other neoplasms. In this review, we report on the genetic characterization and clinical features of MEN4.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253817
Author(s):  
Wasiq Khan ◽  
Sundus Alusi ◽  
Hissam Tawfik ◽  
Abir Hussain

Weight-loss is an integral part of Huntington’s disease (HD) that can start before the onset of motor symptoms. Investigating the underlying pathological processes may help in the understanding of this devastating disease as well as contribute to its management. However, the complex behavior and associations of multiple biological factors is impractical to be interpreted by the conventional statistics or human experts. For the first time, we combine a clinical dataset, expert knowledge and machine intelligence to model the multi-dimensional associations between the potentially relevant factors and weight-loss activity in HD, specifically at the premanifest stage. The HD dataset is standardized and transformed into required knowledge base with the help of clinical HD experts, which is then processed by the class rule mining and self-organising maps to identify the significant associations. Statistical results and experts’ report indicate a strong association between severe weight-loss in HD at the premanifest stage and measures of certain cognitive, psychiatric functional ability factors. These results suggest that the mechanism underlying weight-loss in HD is, at least partly related to dysfunction of certain areas of the brain, a finding that may have not been apparent otherwise. These associations will aid the understanding of the pathophysiology of the disease and its progression and may in turn help in HD treatment trials.


2013 ◽  
Vol 20 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Rodrigo A Toledo ◽  
Yuejuan Qin ◽  
Subramanya Srikantan ◽  
Nicole Paes Morales ◽  
Qun Li ◽  
...  

Pheochromocytomas and paragangliomas are highly vascular tumors of the autonomic nervous system. Germline mutations, including those in hypoxia-related genes, occur in one third of the cases, but somatic mutations are infrequent in these tumors. Using exome sequencing of six paired constitutive and tumor DNA from sporadic pheochromocytomas and paragangliomas, we identified a somatic mutation in the HIF2A (EPAS1) gene. Screening of an additional 239 pheochromocytomas/paragangliomas uncovered three other HIF2A variants in sporadic (4/167, 2.3%) but not in hereditary tumors or controls. Three of the mutations involved proline 531, one of the two residues that controls HIF2α stability by hydroxylation. The fourth mutation, on Ser71, was adjacent to the DNA binding domain. No mutations were detected in the homologous regions of the HIF1A gene in 132 tumors. Mutant HIF2A tumors had increased expression of HIF2α target genes, suggesting an activating effect of the mutations. Ectopically expressed HIF2α mutants in HEK293, renal cell carcinoma 786-0, or rat pheochromocytoma PC12 cell lines showed increased stability, resistance to VHL-mediated degradation, target induction, and reduced chromaffin cell differentiation. Furthermore, mice injected with cells expressing mutant HIF2A developed tumors, and those with Pro531Thr and Pro531Ser mutations had shorter latency than tumors from mice with wild-type HIF2A. Our results support a direct oncogenic role for HIF2A in human neoplasia and strengthen the link between hypoxic pathways and pheochromocytomas and paragangliomas.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Giuseppe Straface ◽  
Andrea Flex ◽  
Federico Biscetti ◽  
Eleonora Gaetani ◽  
Giovanni Pecorini ◽  
...  

Background: Cerebellar hypoxia is responsible for important aspects of cognitive deterioration and motor disturbances in neurological disorders, such as stroke, vascular dementia, and neurodegeneration. In the cerebellum, VEGF is significantly upregulated after hypoxia and is able to induce angiogenesis, reduce neuronal apoptosis, and regulate neuronal differentiation, proliferation, and migration. But, VEGF is not sufficient to provide neuroprotection. A crucial role is played by growth associated protein-43 (GAP43), for which important activities have been described. The purpose of this study was to investigate the role of the developmental Sonic hedgehog (Shh) signaling pathway in postnatal hypoxic cerebellum and its relationship with VEGF and GAP43 expression. Methods: We used adult C57BL/6J mice, ptc1-lacZ mice, and GAP43−/− mice for these experiments. Ptc1-lacZ mice carry a non-disruptive insertion of the lacZ gene under the control of the ptc1 promoter. Ptc1 is a downstream-transcriptional target of Shh and its upregulation indicates activation of the Shh pathway. Mice were exposed to systemic normobaric hypoxia (6%O 2 ) for 6 hours and the expression of Shh, Ptc1, VEGF, and GAP43 were investigated. Results: After exposure to hypoxia, Shh-positive staining was detected in Purkinje cells (PCs). The same cells were also lacZ(ptc1)-positive, indicating that PCs are both Shh-producing and -responding elements. Also the cells of the internal granular layer (IGL) were lacZ(ptc1)-positive, indicating that these cells are Shh-responsive. LacZ(ptc1)-positive IGL cells were also immunopositive for VEGF and GAP-43. We also found that ptc1 expression is lost in PCs of GAP43−/− mice, indicating that Shh requires GAP43 to activate its downstream target genes in PCs. Finally, when cultures enriched in granular cells were stimulated with Shh recombinant protein, GAP43 phosphorylation was increased. This effect was inhibited by Shh-inhibitor cyclopamine. Conclusions: This is the first time that hypoxia is reported to activate the Shh pathway in the adult. Our data suggest that the Shh pathway might be important for the cerebellar response to hypoxia, through interactions with VEGF and GAP43.


Sign in / Sign up

Export Citation Format

Share Document