scholarly journals Phenolic Compounds of Rumex roseus L. Extracts and Their Effect as Antioxidant and Cytotoxic Activities

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohamed Marouane Saoudi ◽  
Jalloul Bouajila ◽  
Khaled Alouani

Rumex roseus L. (R. roseus) is acknowledged as an aromatic plant. For its excellent biological properties, it was used as a traditional medicine. The aim of the present study is to evaluate the chemical components and their effect as the biological activities of Tunisian extracts of R. roseus. Consecutive extractions by cold maceration of the aerial part with solvents of increasing polarity (cyclohexane (CYH), dichloromethane (DCM), and methanol (MeOH)) were performed, and the different chemical groups (phenolics, flavonoids, tannins, anthocyanins, etc.) were identified. In addition, the volatile compounds of the obtained extracts were identified before and after derivatization. Moreover, their antioxidant and anticancer activities were evaluated. The analysis of HPLC-DAD revealed the identification of 18 components from organic extracts, among them are, for example, chlorogenic acid and shikonin, while GC-MS analysis allowed the detection of 34 volatile compounds. Some of those compounds were identified for the first time in plant extracts such as pyrazolo[3,4-d] pyrimidine-3,4(2H,5H)-dione (1); L-proline (16); 2-amino-3-hydroxybutanoic acid (19); L-(-)-arabitol (23); D-(-)-fructopyranose (25); and D-(+)-talopyranose (27). DPPH tests revealed that the most important antioxidant activity was found in the methanolic extract with 75.2% inhibition at 50 mg/L and that the highest cytotoxic activity against HCT-116 and MCF-7 was recorded in the dichloromethane extract with 62.1 and 80.0% inhibition at 50 mg/L, respectively. The biological activities were fully correlated with the chemical composition of the different extracts. So, we can suggest that R. roseus is a source of bioactive molecules that could be considered potential alternatives for use in dietary supplements for the prevention or treatment of diseases.

2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Cristian Valdés Vergara ◽  
Dusanka Kitic ◽  
Milica Kostic ◽  
...  

The genus Viburnum (Adoxaceae, Dipsacales) is of scientific interest due to the chemical components and diverse biological activities found across species of the genus, which includes more than 230 species of evergreen, semievergreen, or deciduous shrubs and small trees. Although frequently used as an ornament, the Viburnum species show biological properties with health-promoting effects. Fruits, flowers, and barks of certain species are used for pharmaceutical purposes or as cooking ingredients, hence containing biochemical compounds with health-promoting activity such are carotenoids, polyphenols, and flavonoids. However, its taxonomical determination is difficult, due to its wide distribution and frequent hybridizations; therefore, an objective classification would allow us to understand its biological activity based on its phytochemical components. More than sixty phytochemical compounds have been reported, where vibsanin-type diterpenes and their derivatives are the most prevalent. Leaves and twigs of V. dilatatum contain the largest number of phytochemicals among the genus. Through preclinical evidence, this study provides insight regarding antioxidant, antibacterial, anti-inflammatory, cytotoxic, and anticancer activities of genus Viburnum.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
M. I. Nasser ◽  
Shuoji Zhu ◽  
Chen Chen ◽  
Mingyi Zhao ◽  
Huanlei Huang ◽  
...  

Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver’s stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Yanyan Zhang ◽  
Ting Han ◽  
Qianliang Ming ◽  
Lingshang Wu ◽  
Khalid Rahman ◽  
...  

In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.


Author(s):  
A.V. SYROESHKIN ◽  
E.V. USPENSKAYA ◽  
T.V. PLETENEVA ◽  
M.A. MOROZOVA ◽  
T.V. MAKSIMOVA ◽  
...  

Objective: Study the influence of the mechanical preparation methods (grinding, fluidization) of solid pharmaceutical substances (PS) and herbal raw material on their physicochemical properties and biological activities. Methods: Test substances and solvents-Lactose monohydrate (DFE Pharma, Germany). Sodium chloride, bendazol hydrochloride (all Sigma-Aldrich, USA) and herbal raw material (Callisia fragrans). The dispersity and native structure of pharmaceutical substances were analyzed by several methods: optical microscopy–Altami BIO 2 microscope (Russia); low angle laser light scattering (LALLS) method (Malvern Instruments, UK); Spirotox method–Quasichemical kinetic of cell transition of cellular biosensor Spirostomum ambiguum; Fourier-transform infrared spectroscopy–the analysis in the middle IR region was carried out using an IR Cary 630 Fourier spectrometer (Agilent Technologies, USA). The analysis of dried leaves of C. fragrans before and after mechanical activation was performed using Shimadzu EDX-7000 X-ray fluorescence spectrophotometer without mineralization (Shimadzu, Japan). Results: It was established that the mechanical change, such as dispersion and drying, alters the biological activity of PS and herbal raw materials. The observed increase in the influence of the dispersed substance on the biosensor S. ambiguum is quantitatively estimated from the values of the activation energy (obsEa), which turns to be valued 1,5 (P≤0,05) times more than for the native form substance. In the study of the dependence of the availability of chemical elements K, Ca, Zn on the degree of dispersion of herbal raw materials was established a quantitative 4-fold (P≤0,05) increase in the concentration of elements in mechano-activated raw materials. Conclusion: By the example of the biological model of Spirotox (single-celled biosensor S. ambiguum) and herbal raw materials obtained from C. fragrans, the increase of biological activity of PS at the dispersion of initial preparations was proved.


2020 ◽  
Vol 21 (14) ◽  
pp. 4986 ◽  
Author(s):  
Axelle Septembre-Malaterre ◽  
Mahary Lalarizo Rakoto ◽  
Claude Marodon ◽  
Yosra Bedoui ◽  
Jessica Nakab ◽  
...  

Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Shaopeng Wang ◽  
Caihua Zhang ◽  
Guang Yang ◽  
Yanzong Yang

Numerous studies have revealed that regular consumption of certain fruits and vegetables can reduce the risk of many diseases. The rhizome of Zingiber officinale (ginger) is consumed worldwide as a spice and herbal medicine. It contains pungent phenolic substances collectively known as gingerols. 6-Gingerol is the major pharmacologically-active component of ginger. It is known to exhibit a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. 6-Gingerol has been found to possess anticancer activities via its effect on a variety of biological pathways involved in apoptosis, cell cycle regulation, cytotoxic activity, and inhibition of angiogenesis. Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, 6-gingerol has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various diseases. Taken together, this review summarizes the various in vitro and in vivo pharmacological aspects of 6-gingerol and the underlying mechanisms.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 872 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Lamiaa G. Wasef ◽  
Yaser H. A. Elewa ◽  
Ahmed A. Al-Sagan ◽  
...  

Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.


Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Akhila Nair ◽  
Augustine Amalraj ◽  
Joby Jacob ◽  
Ajaikumar B. Kunnumakkara ◽  
Sreeraj Gopi

Over the past decades curcuminoids have been extensively studied for their biological activities such as antiulcer, antifibrotic, antiviral, antibacterial, antiprotozoal, antimutagenic, antifertility, antidiabetic, anticoagulant, antivenom, antioxidant, antihypotensive, antihypocholesteremic, and anticancer activities. With the perception of limited toxicity and cost, these compounds forms an integral part of cancer research and is well established as a potential anticancer agent. However, only few studies have focused on the other bioactive molecules of turmeric, known as non-curcuminoids, which are also equally potent as curcuminoids. This review aims to explore the comprehensive potency including the identification, physicochemical properties, and anticancer mechanism inclusive of molecular docking studies of non-curcuminoids such as turmerones, elemene, furanodiene (FN), bisacurone, germacrone, calebin A (CA), curdione, and cyclocurcumin. An insight into the clinical studies of these curcumin-free compounds are also discussed which provides ample evidence that favors the therapeutic potential of these compounds. Like curcuminoids, limited solubility and bioavailability are the most fragile domain, which circumscribe further applications of these compounds. Thus, this review credits the encapsulation of non-curcuminoid components in diverse drug delivery systems such as co-crystals, solid lipid nanoparticles, liposomes, microspheres, polar-non-polar sandwich (PNS) technology, which help abolish their shortcomings and flaunt their ostentatious benefits as anticancer activities.


2012 ◽  
Vol 90 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Hans J. Vogel

Lactoferrin is an abundant iron-binding protein in milk. This 80 kDa bilobal glycoprotein is also present in several other secreted bodily fluids, as well as in the secondary granules of neutrophils. The potent iron-binding properties of lactoferrin can locally create iron deficiency, and this is an important factor in host defense as it prevents bacteria from growing and forming biofilms. In addition to having antibacterial activity, lactoferrin is now known to have a long list of other beneficial biological properties. It has direct antiviral, antifungal, and even some anticancer activities. It can also promote wound healing and bone growth, or it can act as an iron carrier. Moreover, lactoferrin displays a cytokine-like “alarmin” activity, and it activates the immune system. Simultaneously, it can bind endotoxin (lipopolysaccharide), and in doing so, it modulates the activity of the host immune response. The majority of these intriguing biological activities reside in the unique positively charged N-terminal region of the protein. Interestingly, several peptides, which retain many of the beneficial activities, can be released from this region of lactoferrin. An isoform of the human protein, known as delta-lactoferrin, is expressed inside many cells, where it acts as a transcription factor. Lactoferrin purified from human and bovine milk have very similar but not completely identical properties. Lactoferrin receptors have been identified on the surface of various cells, and some of these can bind both the human and the bovine protein. Because of the extensive health-promoting effects of lactoferrin, there has been considerable interest in the use of bovine or human lactoferrin as a “protein nutraceutical” or as a therapeutic protein. When lactoferrin is used as a “biologic drug”, it seems to be orally active in contrast to most other therapeutic proteins.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Radmila Ilijeva ◽  
Gerhard Buchbauer

Plants and their extracts are the new field of interest for many scientists and also of some pharmaceutical industries. In order to provide more information for their usage in the prevention and treatment of diseases many clinical trials and researches are being carried out. In this review the biological activities and the mechanism of action of volatile phenylpropanoids (PPs) found in essential oils (EOs) are presented. The aim of this overview is to show that volatile PPs found in EOs can exert many of the biological activities which are generally attributed to EOs. Almost all of the PPs possess antimicrobial, anti-inflammatory and anticancer activities. These are related to the different substitution of the phenylpropane molecule. For each isolated group not only one, but more pharmacological activities can be credited.


Sign in / Sign up

Export Citation Format

Share Document