scholarly journals Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ayşe Baran ◽  
Mehmet Fırat Baran ◽  
Cumali Keskin ◽  
Sevgi Irtegun Kandemir ◽  
Mahbuba Valiyeva ◽  
...  

Recycling wastes and providing their use in useful fields attract attention every day. In our study, with the extract prepared from the parts of the Cynara scolymus L. (artichoke) plant that is not suitable for human consumption, silver nanoparticles were easily synthesized in an ec-friendly, energy-free way. Characterization of the obtained nanoparticles was done with a UV-visible spectrophotometer (UV-Vis.), fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and zeta potential analysis data. In these data, it was determined that AgNPs have a maximum absorbance at 458.8 nm wavelength, a crystal nanosize of 28.78 nm, and a spherical appearance. The zeta potential of (-) 16.9 mV indicates that silver nanoparticles exhibit a stable structure. Particles show antimicrobial effects on pathogenic species at concentrations of 0.03-0.25 μg/ml, and it was determined by using the minimum inhibition concentration (MIC) microdilution method. By examining their cytotoxic effects on U118, CaCo-2, and Skov-3 cancer cell lines and healthy HDF cell lines by the MTT method, concentrations of inhibitive effects on survival were determined.

Author(s):  
Nabraj Bhattarai ◽  
Subarna Khanal ◽  
Pushpa Raj Pudasaini ◽  
Shanna Pahl ◽  
Dulce Romero-Urbina

Citrate stabilized silver (Ag) colloidal solution were synthesized and characterized for crystallographic and surface properties by using transmission electron microscopy (TEM) and zeta potential measurement techniques. TEM investigation depicted the size of Ago ranges from 5 to 50 nm with smaller particles having single crystal structure while larger particles with structural defects (such as multiply twinned, high coalescence and Moire patterns). ?-potential measurement confirms the presence of Ag+ in nAg stock solution. The shift in ?-potential measurement by +25.1 mV in the filtered solution suggests the presence of Ag+ in Ago nanoparticles.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Edwina Olohirere Uzunuigbe ◽  
Abidemi Paul Kappo ◽  
Sixberth Mlowe ◽  
Neerish Revaprasadu

Synthesizing nanoparticles with the less environmentally malignant approach using plant extract is of great interest; this is because most of the chemical approaches can be very costly, toxic, and time-consuming. Herein, we report the use of Acacia senegal leaf extracts to synthesize silver nanoparticles (AgNPs) using an environmentally greener approach. Silver ions were reduced using the bioactive components of the plant extracts with observable colour change from faint colourless to a brownish solution as indication of AgNP formation. The structural properties of the as-synthesized AgNPs were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-Vis absorption spectrum. Antimicrobial assessment of the as-synthesized AgNPs was explored on some strains of gram-positive and gram-negative bacteria. The obtained results indicate that the as-synthesized AgNPs are pure crystallite of cubic phase of AgNPs, fairly dispersed with a size range of 10–19 nm. The AgNPs were found to be small in size and exhibit significant antibacterial activities, suggesting that the as-synthesized AgNPs could be used in the pharmaceutical and food industries as bactericidal agents.


2019 ◽  
Vol 8 (1) ◽  
pp. 590-599 ◽  
Author(s):  
Kaushik Roy ◽  
Ambikesh K. Srivastwa ◽  
Chandan K. Ghosh

Abstract In this report, we present a simple and unexplored procedure for green synthesis of silver nanoparticles featuring exudation of Euphorbia acruensis along with the study of its antibacterial and anticoagulant properties. Analytical techniques like ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) were used to analyse the production, crystallinity and morphology of bio-reduced silver nanoparticles. The antibacterial study was performed by following standard disc diffusion method. Most importantly, the anticoagulant and thrombolytic activities of biogenic silver nanoparticles were evaluated by addition of nanoparticles to human blood samples under practical conditions. These green synthesized silver nanoparticles were found to have potent antibacterial, anticoagulant and thrombolytic properties which make them an attractive choice for future medical applications.


2013 ◽  
Vol 57 (8) ◽  
pp. 3688-3698 ◽  
Author(s):  
Soumitra Mohanty ◽  
Prajna Jena ◽  
Ranjit Mehta ◽  
Rashmirekha Pati ◽  
Birendranath Banerjee ◽  
...  

ABSTRACTWith the emergence of multidrug-resistant mycobacterial strains, better therapeutic strategies are required for the successful treatment of the infection. Although antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) are becoming one of the popular antibacterial agents, their antimycobacterial potential is not fully evaluated. In this study, we synthesized biogenic-silver nanoparticles using bacterial, fungal, and plant biomasses and analyzed their antibacterial activities in combination with AMPs against mycobacteria.Mycobacterium smegmatiswas found to be more susceptible to AgNPs compared toM. marinum. We found that NK-2 showed enhanced killing effect with NP-1 and NP-2 biogenic nanoparticles at a 0.5-ppm concentration, whereas LLKKK-18 showed antibacterial activity only with NP-2 at 0.5-ppm dose againstM. smegmatis. In case ofM. marinumNK-2 did not show any additive activity with NP-1 and NP-2 and LLKKK-18 alone completely inhibited the bacterial growth. Both NP-1 and NP-2 also showed increased killing ofM. smegmatisin combination with the antituberculosis drug rifampin. The sizes and shapes of the AgNPs were determined by transmission electron microscopy and dynamic light scattering. AgNPs showed no cytotoxic or DNA damage effects on macrophages at the mycobactericidal dose, whereas treatment with higher doses of AgNPs caused toxicity and micronuclei formation in cytokinesis blocked cells. Macrophages actively endocytosed fluorescein isothiocyanate-labeled AgNPs resulting in nitric oxide independent intracellular killing ofM. smegmatis. Apoptosis and cell cycle studies showed that treatment with higher dose of AgNPs arrested macrophages at the G1-phase. In summary, our data suggest the combined effect of biogenic-AgNPs and antimicrobial peptides as a promising antimycobacterial template.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4479
Author(s):  
Pei-Jun Li ◽  
Jiang-Juan Pan ◽  
Li-Jun Tao ◽  
Xia Li ◽  
Dong-Lin Su ◽  
...  

The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1042 ◽  
Author(s):  
Sharad Bhatnagar ◽  
Toshiro Kobori ◽  
Deepak Ganesh ◽  
Kazuyoshi Ogawa ◽  
Hideki Aoyagi

In recent years, green syntheses have been researched comprehensively to develop inexpensive and eco-friendly approaches for the generation of nanoparticles. In this context, plant and microbial sources are being examined to discover potential reducing agents. This study aims to utilize an extracellular pigment produced by Talaromyces purpurogenus as a prospective reducing agent to synthesize silver nanoparticles (AgNPs). Biosynthesized AgNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), electron probe micro analyser (EPMA), and zeta potential. The pigment functional groups involved in the generation of AgNPs were investigated using Fourier transform infrared spectroscopy. TEM images showed that the generated nanoparticles were spherical, hexagonal, rod-shaped, and triangular-shaped with a particle size distribution from 4 to 41 nm and exhibited a surface plasmon resonance at around 410 nm. DLS and zeta potential studies revealed that the particles were polydispersed and stable (−24.8 mV). EPMA confirmed the presence of elemental silver in the samples. Biosynthesized AgNPs exhibited minimum inhibitory concentrations of 32 and 4 μg/mL against E. coli and S. epidermidis, respectively. Further, cytotoxicity of the AgNPs was investigated against human cervical cancer (HeLa), human liver cancer (HepG2), and human embryonic kidney (HEK-293) cell lines using 5-fluorouracil as a positive control. A significant activity was recorded against HepG2 cell line with a half-maximal inhibitory concentration of 11.1 μg/mL.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 442
Author(s):  
Chanon Talodthaisong ◽  
Kittiya Plaeyao ◽  
Chatariga Mongseetong ◽  
Wissuta Boonta ◽  
Oranee Srichaiyapol ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) are applied in various applications in catalysis, biosensing, imaging, and as antibacterial agents. Here we prepared ZnO nanomaterials decorated by γ-aminobutyric acid (GABA), curcumin derivatives (CurBF2) and silver nanoparticles (CurBF2-AgNPs). The structures of all ZnO nanostructures were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV–VIS spectrophotometry, fluorescence spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). Further, their antibacterial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were investigated through analysis of minimum inhibitory concentration (MIC) method. Among the prepared nanostructures, the ZnO NPs-GABA/CurBF2-AgNPs showed excellent antibacterial activity against both Gram-positive and Gram-negative bacteria. ZnO NPs fabricated here may have potential use in future anti-bacterial compositions and coatings technologies.


2021 ◽  
Vol 10 (1) ◽  
pp. 711-721
Author(s):  
Sabah Ahmed Al-Zahrani ◽  
Ramesa Shafi Bhat ◽  
Sarah A. Al Rashed ◽  
Amer Mahmood ◽  
Ahmed Al Fahad ◽  
...  

Abstract Marine green algae are rich in various bioactive components with known anticancer activity. Some anticancer drugs present in green algae are in clinical trials nowadays. Algae-mediated silver nanoparticles (AgNPs) have been of a great interest in cancer treatment due to their unique physico-chemical properties. In this study, we evaluate the anticancer efficiency of marine alga Chaetomorpha ligustica collected from the Arabian Gulf against colon cancer cell lines HT29 and HCT116. The anticancer potential of biosynthesized AgNPs from C. ligustica extract is also reported. Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry analyses were used to identify the phytoconstituents present in algae extract. The synthesized AgNPs were confirmed via UV-Vis spectroscopy, whereas their morphology and stability were recorded by transmission electron microscopy (TEM), zeta potential, and zetasizer. We recorded absorption peak at 420 nm; TEM images showed an average size of 8.8 nm, whereas zeta potential and zetasizer study showed aggregation of nanoparticles. FTIR spectroscopy peaks of C. ligustica AgNPs were a little different from those of the C. ligustica extract. Both extracts showed cytotoxicity against cancer cell lines in a dose-dependent manner, but nanoparticles were found to be more toxic than algae extract. HT29 was found to be more sensitive than HCT116. For the first time, species of C. ligustica have been used and reported for the synthesis of nanoparticles. C. ligustica and its biogenic nanoparticles need to be scaled up for many biomedical applications especially in cancer research.


2019 ◽  
Vol 18 (3(69)) ◽  
pp. 56-70
Author(s):  
M. A. Sukhina ◽  
Yu. A. Shelygin ◽  
A. Yu. Piyadina ◽  
N. B. Feldman ◽  
M. A. Ananyan ◽  
...  

AIM: to obtain and investigate the activity of silver nanoparticles stabilized with arabinogalactan in relation to clinically relevant strains of filmforming microorganisms. MATERIALS AND METHODS: silver nanoparticles were obtained by reduction from silver nitrate in the presence of arabinogalactan with additional stabilization with dioctyl sodium sulfosuccinate. The shape and size of the nanoparticles were determined by the method of transmission electron microscopy, the zeta potential by the method of electrophoretic light scattering. The study of the effect of the nanoparticles on biofilm formation was carried out on 17 clinically relevant strains of bacteria isolated from blood culture and the clinical biomaterial of postoperative patients. RESULTS: the silver nanoparticles with an average diameter of 11.4 nm and a zeta potential of –24 mV were obtained. The minimum inhibitory concentration of the nanoparticles in relation to planktonic form of bacteria was 120 µg/ml; the use of the drug at a concentration of 100 µg/ml reduced the amount of CFU by 7 orders of magnitude compared with the initial culture. The study of the effect of silver nanoparticles on the formation of biofilms showed that, in the presence of the drug, the growth of biofilms was significantly reduced; at a drug concentration of 150 µg/ml, the growth of bacterial films was completely suppressed. Incubation of the formed daily biofilms with the silver nanoparticles in the concentration range from 150 to 120 µg/ml for 48 h resulted in the partial or complete destruction of the biopolymer matrix. CONCLUSION: the studied preparation of silver nanoparticles has a great potential for use in the treatment of infectious diseases caused by biofilm forming microorganisms.


Sign in / Sign up

Export Citation Format

Share Document