scholarly journals Effects of Oil Contamination on the Physical-Mechanical Behavior of Loess and Its Mechanism Analysis

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shibin Zhang ◽  
Rongjian Li ◽  
Weishi Bai ◽  
Qiang Yang

Oil leakage will not only pollute the soil but also change its physical-mechanical behavior, and loess has complex properties in the environment of oil presence. Artificial loess contaminated by diesel oil is collected as the research object. The physical and mechanical properties of clean loess and contaminated loess, including liquid and plastic limits, permeability, compression properties, and compressive strength characteristics, are estimated through a series of laboratory tests under different oil contents, water contents, and dry densities. Results show that liquid limits, plastic limits, and permeability coefficient of diesel-contaminated loess decrease with the increase of oil content. The compression modulus and compressive strength of diesel-contaminated loess increase with the increase of dry density at the same oil content. Adding diesel oil, the change law of the unconfined compressive strength of contaminated loess is opposite at the two different water contents. The variation of the compression modulus and unconfined compressive strength of diesel oil-contaminated loess is basically identical at the same condition. The findings of this study would be expected to bridge the gap between theory and practice in treatment and remediation of contaminated soil in the region of oil production.

2021 ◽  
Author(s):  
Shibin Zhang ◽  
Rongjian Li ◽  
Lei Wang ◽  
Qiang Yang

Abstract In loess oil-production areas, oil leakage not only contaminates the loess, but also changes its mechanical properties. This study aimed to evaluate the effect of diesel oil contamination on mechanical behaviors of loess though extensive laboratory tests conducted on loess with different oil contents (0% to 16%) and dry densities (1.35, 1.45, and 1.55 g/cm3). Two different modes of oil contamination were proposed and applied in compression tests, direct shear tests and unconfined compressive strength tests to study the compressibility and strength characteristics of diesel-contaminated loess. Results show that oil-contamination modes have certain effects on the mechanical behaviors of loess. Under the first mode of oil contamination, compared with clean loess, the compressibility of contaminated loess increases and its unconfined compressive strength and shear strength all decrease. The compression modulus, friction angle, unconfined compressive strength of diesel-contaminated loess using the second mode of oil contamination are larger than those in the first mode of oil contamination at the same oil content and dry density. Understanding these effects of oil pollution can significantly guide soil and environment-remediation activities in oil-production areas.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xiaohui Yang ◽  
Hongyuan Zhou ◽  
Shuo Zhang

In this study, the specimens of cemented sand were prepared by reinforcing it separately with different contents (0.5%, 1.0%, 1.5%, and 2.0%) of three different polymer fibers (polyamide, polyester, and polypropylene) prepared as filaments of different lengths (6, 9, and 12 mm). Then, these specimens were tested, and the improvement effects of the three fibers on the engineering-mechanical behavior of the cemented sand were analyzed and compared. The different microstructures and chemical compositions of the fiber-reinforced cemented sand specimens were investigated using electron microscopy and X-ray diffraction. Compression tests were performed to obtain the stress-strain curves of the specimens. Comparative analysis was performed on the variation patterns of the mechanical parameters (such as unconfined compressive strength and peak strain) of the specimens. Quantitative analysis was performed on the effect of fiber content and fiber filament length on the failure mode of the specimens. It was shown that the inclusion of fibers led to a change from brittle failure to ductile failure. The macro- and microexperimental results revealed that polypropylene fiber had the best improvement effect on the mechanical behavior of the cemented sand, followed by polyester fiber and polyamide fiber. In particular, the cemented sand specimen reinforced with 1.5% polypropylene fiber prepared as 9 mm length filaments had a brittleness index of 0.0578, exhibited ductile failure (in contrast to the brittle failure of the nonreinforced cemented sand), and yielded the highest unconfined compressive strength and shear strength among the specimens.


2020 ◽  
Vol 40 (1) ◽  
pp. 7-16
Author(s):  
Ali Firat Cabalar ◽  
Hayder Govar ◽  
Mohammed D. Abdulnafaa ◽  
Haluk Isik

This paper aims to investigate the use of spiral aluminum computer numerical control milling waste (CNC-W) in the construction of road pavement subgrade. The soil (CL) was mixed with CNC-W spirals with ratios of between 0% and 20%, and 5 percent increments by dry weight with different water contents. California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS), and consolidation tests were conducted. The experimental results indicated that the inclusion of CNC-W spirals increased the CBR value of clay up to the 15% mixture ratio, then decreased it. Similarly, the UCS value of clay was increased to the same ratio, whilst the UCS was not able to be determined due to the failing of all specimens with a mixture ratio higher than 15%. The permeability and swelling values, as well as the consolidation characteristics of the mixtures, were defined. The swelling percentages decreased from 1,15 cm/sec to 0,81 cm/sec with an increment in the CNC-W spiral content. A reduction was observed in the coefficient of permeability (k) values up to 15% mixture ratio, whilst it remained constant with change in CNC-W spiral content with a 20% mixture ratio. Coefficient of consolidation demonstrated a similar pattern of behavior to the permeability changes


2020 ◽  
Vol 10 (3) ◽  
pp. 36-53
Author(s):  
Dr. Zaid Hameed Majeed ◽  
Eng. Kadhim Jawad Aubais ◽  
Dr. Mohd Raihan Taha

The design foundations  of storage tanks for oil industry experiences significant problems due to the widespread occurrence of weak and compressible soil which resulted in foundation failure. In this study, soft soils were taken from two locations and mixed with three types of nanoparticles which were nano-alumina (nano Al2O3), nano-copper (nano CuO), and nano-magnesium (nano MgO). Nanomaterials were incorporated in small percentage (less than 1%) by dry weight of soil. The tested geotechnical characteristics included the water content, dry density, and the unconfined compressive strength. The results showed significant enhancements in the maximum dry density and unconfined compressive strength. The level of enhancement depended on the type of nanomaterials and the contents. Improved strength and hardening properties were shown with the utilization of nano CuO material in comparison to the soil samples with the other nanomaterials additions, with its optimum addition of 0.7% provided an increment rate of 662.7% while the optimum nano CuO which is about 1% showed a 532% increasing rate in the compressive strength of S1 soil. It was noted that the maximum dry density and unconfined compressive strength enhanced with the increase in the nanoparticles content until reaching a percentage in which the strength decreased. The optimum content of the nano MgO was 0.3% while the optimum nano Al2O3 content was about 0.3% for soil S1 and was about 0.1% for soil S2. The presence of nanomaterials in excessive contents caused agglomeration of particles which had negative influences on mechanical characteristics of the soils. Generally, the incorporation of finer particles like nanoparticles even with low amount would improve the geotechnical characteristics of soils with the consideration of the potential environmental benefits, these combined admixtures are intended to lower the cost and become a more sustainable and environmental alternative for soil stabilization


2021 ◽  
Vol 1197 (1) ◽  
pp. 012077
Author(s):  
K.S Chamberlin ◽  
M. Rama Rao

Abstract Expansive soils are found in black cotton soils, which swell or shrink in volume when presented to changes in moisture content. Lime treatment is exhaustively used to increment the properties of sensitive and fragile soils. One of the hugest clarifications behind using lime is to decline the developing presentation of the earth soil. The arrangement of extra safeguards improves the reaction of quicklime (CaO) with water, structures hydrated (slaked) lime (Ca (OH)2), and thus earth characteristics. The vast inadequacy of employing lime is growing the deficiency of lime offset earth. Following that, the goal of this study is to see how re-establishing time affects the geotechnical qualities of settled Black cotton soils with lime. These discoveries recommend that adding Lime as a stabilizer works on the strength of black cotton soil. Some of the characteristics of the soil likely to be increased by using stabilizer in this work are UCS (Unconfined Compressive Strength) at different curing periods (7,14,28 and 56 days), CBR (California Bearing Ratio) value at unsoaked and soaked and MDD (Maximum Dry Density) decrease at different lime percentages(%) like 2.4.6.8 and 10. The result showed here untreated soil got stabilized by using the stabilizer in certain extent In this adjustment various rates of cementitious material is added to black cotton soil and directed tests like plasticity, compaction, swell pressure, free swell index(FSI), Coefficient of permeability (k) and CBR(soaked and unsoaked) at various conditions like OMC,OMC+2% water and OMC+5% water, UCS (Unconfined Compressive Strength) was performed. From the test results, it is identified that the stabilization agent decreases plasticity and improves strength characteristics. Addition of stabilizing agent makes the black cotton soil to non-plastic, non-swelling and attains increase CBR values which are greater than 25% for a dosage of 10% lime at OMC but remaining OMC+2%water & OMC+5%water CBR values are not various much difference as per test results. With the addition of lime, the black cotton soil becomes non-plastic, non-swelling, and has high strengths. Treated soils are used as a development material, for example, a subgrade layer in the development of adaptable asphalt pavements for roads.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 203 ◽  
Author(s):  
Muhammad Irfan ◽  
Yulong Chen ◽  
Muhammad Ali ◽  
Muhammad Abrar ◽  
Ahmed Qadri ◽  
...  

The unchecked and unnoticed disposal of industrial leachates is a common malpractice in developing countries. Untreated effluents from industries drastically deteriorate the soil, altering nearly all of its characteristics. An increase in urbanization has led to construction on these deteriorated lands. In this study, the chemical impact of two industrial effluents, dyeing (acidic) and tannery (basic), is studied on two cohesive soils, i.e., high plastic clay (CH) and low plastic clay (CL). Properties such as liquid limit, plasticity index, specific gravity, maximum dry density, unconfined compressive strength, swell potential, swell pressure, and compression indices decrease with effluent contamination, with the exception of the basic effluent, for which the trend changes after a certain percentage. This study also examines the time variation of properties at different effluent percentages, finding that unconfined compressive strength of both soils increases with time upon dyeing (acidic) contamination and decreases with tannery (basic). The stabilizing effect of two industrial by-products, i.e., marble dust and ground granulated blast furnace slag (GGBFS) have been evaluated. Unlike their proven positive effect on uncontaminated soils, these industrial by-products did not show any significant stabilization effect on leachate-contaminated cohesive soils, thereby emphasizing the need to utilize special remediation measures for effluent treated soils.


Author(s):  
Ramzi Taha

Road rehabilitation and reconstruction generate large supplies of reclaimed asphalt pavement (RAP) aggregate, and recycling into asphalt paving mixtures is the predominant application. Cement kiln dust (CKD), also known as cement bypass dust, is a by-product material generated during production of portland cement. In Oman, where recycling of pavement materials is not practiced, a first attempt was made at combining two by-product materials for use in road construction. Conservation of natural resources and preservation of the environment are two benefits that could be gained by reusing waste materials. The potential use in road bases of CKD-stabilized RAP and RAP with virgin aggregate mixtures was investigated. Physical, compaction, and unconfined compressive strength tests were conducted on RAP and virgin aggregate blends of 100% to 0%, 90% to 10%, 80% to 20%, and 0% to 100%. Samples were prepared using CKD at 0%, 3%, 5%, 7%, 10%, 15%, and 20% and were cured for 3, 7, and 28 days in plastic bags at room temperature. Results indicate that the maximum dry density and unconfined compressive strength of RAP generally increase with addition of virgin aggregate and CKD. The moisture content-dry density curves for CKD-stabilized RAP aggregate mixtures did not show a distinctive peak similar to that of the 100% virgin aggregate blend. Longer curing periods will produce higher strength values. CKD content of 15% seems to be the optimum for achieving maximum strength.


Sign in / Sign up

Export Citation Format

Share Document