scholarly journals Vibration Characteristics and Simulation Verification of the Dual-Rotor System for Aeroengines with Rub-Impact Coupling Faults

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Pingping Ma ◽  
Mingxin Shan ◽  
Jingyu Zhai ◽  
Hao Zhang ◽  
Qingkai Han

To study the rub-impact fault between the dynamic and static parts of the rotor system of aeroengines, the dual-rotor system of a typical aeroengine is introduced and taken as the research object. The analytical kinetic model is established based on the Lagrange equation considering the structural characteristics of the dual-rotor system, the coupling effect of the intermediate bearing, and the rub-impact fault between the high-pressure turbine disc and the casing. The dynamic characteristics of the dual-rotor system under the rub-impact fault are analyzed, and the change rule of the rub-impact shape is obtained. The vibration coupling and transfer among the high-pressure rotor and the low-pressure rotor are revealed. The influence of the unbalanced position and the speed of high and low rotors on the vibration response of the dual rotor is obtained. The sensitivity of the vibration response of the dual rotor at different test points to rub-impact stiffness, clearance, and friction coefficient is compared. The simulation model is established based on the rigid-flexible coupling multibody dynamic simulation platform. The analytical results and simulation results are compared, which have a good consistency. The theoretical research can deepen the understanding of the nature and law of aeroengine rotor operation, expose the possible faults and design defects, greatly improve the development efficiency and quality, reduce repeated physical tests, reduce the development risk and cost, and accelerate the development process. This study can provide a theoretical basis for the monitoring and diagnosis of engine rub-impact faults and provide theoretical and practical reference for the establishment of the vibration fault test and analysis method system.

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Nan Zheng ◽  
Moli Chen ◽  
Guihuo Luo ◽  
Zhifeng Ye

When aircraft make a maneuvering during flight, additional loads acting on the engine rotor system are generated, which may induce rub-impact faults between the rotor and stator. To study the rub-impact response characteristics of the rotor system during hovering flight, the dynamic model of a rub-impact rotor system is established with lateral-torsional vibration coupling effect under arbitrary maneuvering flight conditions using the finite element method and Lagrange equation. An implicit numerical integral method combining the Newmark-β and Newton–Raphson methods is used to solve the vibration response. The results indicate that the dynamic characteristics of the rotor system will change during maneuvering flight, and the subharmonic vibrations are amplified in both lateral and torsional vibrations due to maneuvering overload. The form of the rub-impact is different during level and hovering flight conditions: the rub-impact may occur at an arbitrary phase of the whole cycle under the condition of level flight, while only local rub-impact occurs during hovering flight. Under the both flight conditions, the rub-impact has a large effect on the spectral characteristics, periodicity, and stability of the rotor system.


2015 ◽  
Vol 70 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Gerhard Sohr ◽  
Nina Ciaghi ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractSingle crystals of the hydrous cadmium borate Cd6B22O39·H2O were obtained through a high-pressure/high-temperature experiment at 4.7 GPa and 1000 °C using a Walker-type multianvil apparatus. CdO and partially hydrolyzed B2O3 were used as starting materials. A single crystal X-ray diffraction study has revealed that the structure of Cd6B22O39·H2O is similar to that of the type M6B22O39·H2O (M=Fe, Co). Layers of corner-sharing BO4 groups are interconnected by BO3 groups to form channels containing the metal cations, which are six- and eight-fold coordinated by oxygen atoms. The compound crystallizes in the space group Pnma (no. 62) [R1=0.0379, wR2=0.0552 (all data)] with the unit cell dimensions a=1837.79(5), b=777.92(2), c=819.08(3) pm, and V=1171.00(6) Å3. The IR and Raman spectra reflect the structural characteristics of Cd6B22O39·H2O.


Author(s):  
R. Weldon ◽  
R. Kellett

This paper gives an outline of the design and development of the 750-b.h.p. prototype glandless boiler circulating pump to be commissioned at Kingsnorth Power Station. Suction conditions of 2650 lb/in2 (gauge) and 650°F demanded special techniques for the maintenance of safe motor winding temperature levels under all types of operation. Constructional details of the high-pressure casings and the rotor system, employing water-lubricated bearings, are discussed, together with those of the auxiliary cooling system. Comprehensive prototype tests were carried out to prove the principal design features. Particulars of the test rigs used and the results obtained from them are given.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Liu ◽  
Jiyuan Han ◽  
Siyao Zhao ◽  
Qingyu Meng ◽  
Tuo Shi ◽  
...  

Aiming at the analysis of the dynamic characteristics of the rotor system supported by deep groove ball bearings, the dynamic model of the double-disk rotor system supported by deep groove ball bearings was established. In this paper, the nonlinear finite element method is used combined with the structural characteristics of deep groove ball bearings. Based on the nonlinear Hertz contact theory, the mechanical model of deep groove ball bearings is obtained. The excitation response results of the rotor system nodes are solved by using the Newmark-β numerical solution method combined with the Newton–Raphson iterative method. The vibration characteristics of the rotor system supported by deep groove ball bearings are studied deeply. In addition, the effect of varying compliance vibration (VC vibration) caused by the change in bearing support stiffness on the dynamics of the system is considered. The time domain and frequency domain characteristics of the rotor system at different speeds, as well as the influence of bearing clearance and bearing inner ring’s acceleration on the dynamics of the rotor system are analyzed. The research shows that the VC vibration of the bearing has a great influence on the motion of the rotor system when the rotational speed is low. Moreover, reasonable control of bearing clearance can reduce the mutual impact between the bearing rolling element and the inner or outer rings of the bearing and reduce the influence of unstable bearing motion on the vibration characteristics of the rotor system. The results can provide theoretical basis for the subsequent study of the nonlinear vibration characteristics of the deep groove ball bearing rotor system.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Liu ◽  
Shuaishuai Ming ◽  
Siyao Zhao ◽  
Jiyuan Han ◽  
Yaxin Ma

In this paper, in order to solve the problem of unbalance vibration of rigid rotor system supported by the active magnetic bearing (AMB), automatic balancing method is applied to suppress the unbalance vibration of the rotor system. Firstly, considering the dynamic and static imbalance of the rotor, the detailed dynamic equations of the AMB-rigid rotor system are established according to Newton’s second law. Then, in order to rotate the rotor around the inertia axis, the notch filter with phase compensation is used to eliminate the synchronous control current. Finally, the variable-step fourth-order Runge–Kutta iteration method is used to solve the unbalanced vibration response of the rotor system in MATLAB simulation. The effects of the rotational speed and phase compensation angle on the unbalanced vibration control are analysed in detail. It is found that the synchronous control currents would increase rapidly with the increase of rotational speed if the unbalance vibration cannot be controlled. When the notch filter with phase shift is used to balance the rotor system automatically, the control current is reduced significantly. It avoids the saturation of the power amplifier and reduces the vibration response of the rotor system. The rotor system can be stabilized over the entire operating speed range by adjusting the compensation phase of the notch filter. The method in the paper is easy to implement, and the research result can provide theoretical support for the unbalance vibration control of AMB-rotor systems.


Author(s):  
Qihan Li ◽  
James F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied unbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.


Sign in / Sign up

Export Citation Format

Share Document