scholarly journals Study on Mechanical Characteristics of Energy-Absorbing and Anti-Scour Bolts

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhi Tang ◽  
Hao Wu ◽  
Jinguo Lv ◽  
Zhuangzhuang Xin ◽  
Wenbo Zuo

In order to improve the impact resistance and mechanical performance of anchor rods and satisfy the requirements for supporting rockburst roadways, the energy balance equation of the energy-absorbing support and roadway surrounding rock system is established. Moreover, to effectively prevent rockburst disasters, the energy criterion for roadway instability is derived. From the perspective of an energy-absorbing support, a yield-absorbing anti-shock anchor composed of a rod body, tray, constant resistance energy-absorbing device, and special-shaped nut is designed and developed; compared with ordinary anchor rods, this rod has stronger mechanical properties for resisting impact. Theoretical and numerical simulation studies show that the energy-absorbing device has a repeatable deformation failure mode and a constant yield force. The paper also presents the principle involved in the design of anti-shock bolt supports. The energy-absorbing support not only effectively guides and controls the release and conversion of impact energy but also consumes the impact energy in the buffering process of the anchor to ensure the stability of surrounding rock and support protection system. This study aims to provide reference for roadway support design and to improve rock bolts used in rockburst roadways.

2018 ◽  
Vol 18 (6) ◽  
pp. 1811-1823 ◽  
Author(s):  
Chun Zhu ◽  
Dongsheng Wang ◽  
Xing Xia ◽  
Zhigang Tao ◽  
Manchao He ◽  
...  

Abstract. Gravel cushions are widely used to absorb the impact energy of falling rocks in open-pit mines. A particularly important application is to enhance the energy-absorbing capacity of rockfall sheds. In this paper, we study how varying the thickness and particle size of a gravel cushion influences its energy-consumption and buffering effects. We performed a series of laboratory drop tests by dropping blocks from a fixed height onto cushions of different thicknesses and particle sizes. The results indicate that, for a given impact energy, the cushion thickness has a strong influence on the measured coefficient of restitution (COR) and therefore impact pressure. Additional tests were performed to study how the radius of the block and the height it is dropped from affect the measured COR. This showed that as the movement height of the block is increased the COR also increases, and blocks with larger radii exhibit a larger variability in measured COR. Finally, we investigated the influence of rockfall block radius, r, movement height, H, cushion thickness, h, and particle size, d, on the COR and the damage depth, L, of the cushion. The test results reveal that the cushion thickness is the primary design parameter, controlling not only COR, but also the stability of the cushion material. The results provide a theoretical and practical basis for the design of gravel cushions for rockfall protection.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 496
Author(s):  
Shuxue Ding ◽  
Yuan Gao ◽  
Hongwen Jing ◽  
Xinshuai Shi ◽  
Yanjun Qi ◽  
...  

The existence of the weak interlayer in the roadway surrounding rock mass presents a huge threat to the stability of the underground structure and the safety of mining engineering. By the characteristics of strong adaptability, superior anchoring effect and high efficiency of construction, rock bolt has been widely applied in mine reinforcement. However, the influence of the weak interlayer on the compressive performance of the bolted rock mass is still poorly understood due to the challenges in constructing an efficient experimental platform and complex testing processes. Here, we used the self-developed test system to investigate the influence of the thickness, uniaxial compressive strength, and dip angle of the weak interlayer on the compressive behavior of the bolted rock mass with a single free surface. The results show that the weak interlayer has a great weakening effect on the peak strength and elastic modulus of the specimens due to its low mechanical properties, as well as influencing the crack distribution and failure mode of the samples. As the strength of the weak interlayer is lower than 1.27 MPa, the thickness exceeds 20 mm, and the dip angle exceeds 15°, the synergistic bearing effect will be significantly reduced and affect the mechanical performance of the specimens. The evolution of the bolt force and bending moment are greatly impacted by the deformation process which could be divided into distinct stages of destruction, thereby providing an excellent detection method for judging the stability of the surrounding rock of the mine. The discovery of this research promote a better understanding of the impact of the weak interlayer on mining engineering and guide the mine reinforcement in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xi Zhao ◽  
Bangbiao Wu ◽  
Liyuan Yu ◽  
Tieshuan Zhao ◽  
Zhonghua Hu

The underground caverns of Shuangjiangkou hydropower station are under complex geological conditions. During excavation, the stability of the tunnels is severely affected by problems, such as blasting impact and excavation unloading, resulting in abnormal deformation at different locations. On the basis of on-site measurement, the characteristics of rocks at the main powerhouse and the main transformer room are compared through dynamic tests, and a numerical model is established using discrete element method (DEM) to analyze the special influence of fault SPD9-f1 on the deformation after excavation. It is revealed that the surrounding rock of the main powerhouse has stronger impact resistance than that of the main transformer room and that the existence of fault SPD9-f1 accounts for the abnormal deformation. In this study, the failure characteristics and mechanism of surrounding rock deformation controlled by stress and fault are revealed, providing important references for the subsequent excavation and support design of underground projects.


Author(s):  
Joseph M. Gattas ◽  
Zhong You

Foldcore sandwich panels have been the focus of much recent study in the aerospace industry. Existing foldcores are composed of a partially folded Miura origami pattern sandwiched between two stiff facings, and have been shown to possess numerous useful properties for impact-resistant applications. Non-Miura origami pattern with similar geometric properties, specifically rigid-foldability and tessellation, may be used as potential alternative origami-cores for sandwich panels, however the mechanical performance of such cores remains an unexplored area. This paper conducts a preliminary investigation into the impact resistance of five non-Miura sandwich panels. The selected patterns are numerically analysed under quasi-static lateral impact loads, and comparisons are drawn with existing foldcore designs. Two particular patterns are found to have failure modes suited for energy-absorbing applications. Prototypes of these two cores are constructed from polypropylene sheet material and experimentally tested to validate numerical results. Reasonable correlation is seen in the force-displacement response of numerical and experimental models.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.


2001 ◽  
Author(s):  
Wesley J. Cantwell ◽  
Graham Wade ◽  
J. Fernando Guillen ◽  
German Reyes-Villanueva ◽  
Norman Jones ◽  
...  

Abstract The impact resistance of a range of novel fiber metal laminates based on polypropylene, polyamide and polyetherimide matrices has been investigated. Initial attention focused on optimizing the interface between the composite and aluminum alloy constituents. Here, it was shown that composite-metal adhesion was excellent in all systems examined. In addition, tests at crosshead displacement rates up to 3 m/s indicated that the interfacial fracture energies remained high under dynamic loading conditions. High velocity impact tests on a series of 3/2 laminates (3 layers of aluminum/2 layers of composite) highlighted the outstanding impact resistance of a number of these systems. The glass fiber reinforced polypropylene system offered a particularly high impact resistance exhibiting a perforation energy of approximately 160 Joules. Here, failure mechanisms such as extensive plastic drawing in the aluminum layers and fiber fracture in the composite plies were found to contribute to the excellent energy-absorbing characteristics of these systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 30 ◽  
Author(s):  
Vera Realinho ◽  
David Arencón ◽  
Marcelo Antunes ◽  
José Velasco

The present work deals with the study of phosphorus flame retardant microcellular acrylonitrile–butadiene–styrene (ABS) parts and the effects of weight reduction on the fire and mechanical performance. Phosphorus-based flame retardant additives (PFR), aluminum diethylphosphinate and ammonium polyphosphate, were used as a more environmentally friendly alternative to halogenated flame retardants. A 25 wt % of such PFR system was added to the polymer using a co-rotating twin-screw extruder. Subsequently, microcellular parts with 10, 15, and 20% of nominal weight reduction were prepared using a MuCell® injection-molding process. The results indicate that the presence of PFR particles increased the storage modulus and decreased the impact energy determined by means of dynamic-mechanical-thermal analysis and falling weight impact tests respectively. Nevertheless, the reduction of impact energy was found to be lower in ABS/PFR samples than in neat ABS with increasing weight reduction. This effect was attributed to the lower cell sizes and higher cell densities of the microcellular core of ABS/PFR parts. All ABS/PFR foams showed a self-extinguishing behavior under UL-94 burning vertical tests, independently of the weight reduction. Gradual decreases of the second peak of heat release rate and time of combustion with similar intumescent effect were observed with increasing weight reduction under cone calorimeter tests.


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


Sign in / Sign up

Export Citation Format

Share Document