scholarly journals Effect of Pin Geometry and Orientation on Friction and Wear Behavior of Nickel-Coated EN8 Steel Pin and Al6061 Alloy Disc Pair

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Shiv Pratap Singh Yadav ◽  
Avinash Lakshmikanthan ◽  
Siddappa Ranganath ◽  
Manjunath Patel Gowdru Chandrashekarappa ◽  
Praveena Bindiganavile Anand ◽  
...  

Most mechanical systems (in particular, gear transmission system) undergo relative motion which results in increased friction phenomenon (friction coefficient, stresses, and wear rate) and thereby results in loss of efficiency. Mechanical parts undergo relative motion in different geometry configurations and orientations that induce a different state of stress as a result of friction. Till date, attempts are being made to minimize the friction with full sphere pin geometry configuration. The present work focused to reduce the frictional and wear rate, and experiments are conducted with tribo-pairs. i.e., nickel-coated pin surface slide against Al6061 alloy disc. The friction studies are carried out at different loads and geometries of pin surfaces (sphere and hemisphere configured at different orientations such as full sphere and hemisphere configured at 0°, 45°, and 90°) to induce different stress states with reference to sliding directions. Change in the geometry of EN8 pin material and their orientation with reference to sliding direction resulted in a different state of stress. The resulting stress levels were examined under the scanning electron microscope, which revealed the mechanisms of adhesion, abrasion, and extrusion. At a lower magnitude of orientation and load, the extent of asperity breaking lessens and material removal from pin surface decreases. Abrasion wear mechanism was observed corresponding to full sphere configuration on Al 6061 disc, whereas adhesive wear mechanisms are seen with hemisphere pins. The amount of aluminum transfer on pin surface with a hemisphere pin is comparatively more than that of full sphere configuration. At a lower magnitude of state of stress, the mechanism of sliding was dominated by the adhesion effect. At a higher level of state of stress, the mechanism of sliding was dominated by abrasion and extrusion.

Author(s):  
Pragya Saxena ◽  
Arunkumar Bongale ◽  
Satish Kumar ◽  
Priya Sachin Jadhav

Abstract The surface composites of aluminum alloys have a higher scope of applications encountering surface interactions in the aerospace, automobile, and other industries compared to the base aluminum alloys. The friction stir process (FSP) is recently the preferred method to prepare aluminum-based surface composites due to its capability to produce improved physical properties and refined microstructure at the surface. The study examines the Al6061 alloy-based surface composite fabricated by FSP for their wear behavior and microstructure. In this study, the Al6061 alloy-based hybrid surface composites are prepared with varying weight% of copper and graphite microparticles mixture as reinforcement by FSP with two tools having unique pin profiles, i.e., threaded cylindrical and plain cylindrical. These prepared composites are investigated for the dry sliding wear test on a pin-on-disc test set-up. The experiments are designed using the L9 orthogonal array and analyzed by the Taguchi approach to obtain the influence of disc speed, load, and reinforcement weight% on wear rate. The significant parameters influencing the wear rate of the samples tested are obtained using ANOVA. Later the effects of the friction stir process and the wear tests on the microstructure of the workpieces are investigated using FE-SEM/EDS tests. It is concluded that the decrease in wear rate with the rise in reinforcement weight% (Cu + graphite) from 2% to 6%. The load has the maximum effect on the wear rate for the samples prepared by threaded cylindrical FSP tool pin profile, while reinforcement weight% affects significantly the wear rate of the samples prepared by FSP with plain cylindrical pin profile tool.


2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2487
Author(s):  
Yanqing Gu ◽  
Hongwen Zhang ◽  
Xiuqing Fu ◽  
Lei Wang ◽  
Zhenyu Shen ◽  
...  

This study aimed to investigate the wear failure changes of spindle hook teeth and the reasons for such failure during field work. Spindle samples were obtained from a fixed position of the spindle bar under different field picking area conditions and combined with the spatial distribution characteristics of cotton bolls in Xinjiang. After cutting a spindle sample, a scanning electron microscope and an energy spectrum analyzer were used to characterize the micromorphology and element composition of the hook tooth surface and cross section under different working area conditions. The wear parameters of the hook teeth were then extracted. The results showed that the thickness of the coating on the surface of the hook tooth used in this study was between 66.1 µm and 74.4 µm. The major chemical element was chromium, with a small amount of nickel. During the field picking process, failure of the coating on the surface of the hook teeth initially appeared on the tooth tip and tooth edge, and then spread to the entire hook tooth surface. The wear failure of the hook teeth resulted from abrasive wear, oxidative wear, and fatigue peeling. As the picking area increased, the wear area of the hook teeth increased exponentially, while the wear width increased linearly. When the field picking area reached 533.33 ha, the maximum change rate of the wear area was 2.33 × 103 µm2/ha, and the wear width was 1.84 µm/ha. During field work, the thickness of the coating decreased from the cutting surface to the tooth edge, and the wear rate gradually increased. The wear rate at Position 1 was the slowest, at 0.01 µm/ha, and the wear rate at Position 5 was the fastest, at 0.25 µm/ha.


2021 ◽  
Vol 1039 ◽  
pp. 201-208
Author(s):  
Ruaa A. Salman ◽  
Naser K. Zedin

This research is devoted to study the effect of addition (2%) TiO2 with different weight percent of fly ash particulate (0, 2, 4, 6%) to 2024 Al alloy on the wear behavior and hardness. The alloy was fabricated by the liquid metallurgy method. The results founds that the wear rate decreased from 0.55 with 0% fly ash to 0.18 at addition percentage of 6% fly ash. Also, the results reveal increasing the samples wear rate with increasing the load and loaded time. The rate of wear was decreased with increasing the sliding speed. Also, the values of hardness increased from 120VH to 160VH with rising the fly ash from 0% to 6%. Keywords: Fly Ash addition, TiO2, 2024 Al Alloy, Wear Resistance, Hardness.


Author(s):  
Hasan Kasim ◽  
Adem Onat ◽  
Barış Engin ◽  
İsmail Saraç

The use of unfilled pure elastomer parts is limited in friction wheels, roller tires, sealing elements, and dynamic friction air suspension applications requiring high wear resistance. This study investigates the mechanical and tribological properties of new nanocomposites obtained by adding hydroxyl-functionalized graphene nanoplatelets at 1, 4, and 8 phr (parts per hundred rubber) ratios to the carbon black filled main rubber compound of sealing elements designed for axle hubs. The synergistic effect of nanofiller materials on the wear behavior of nanocomposites was tested with a block-on-ring wear tester under dry sliding conditions at 1000 rpm and 15 N normal load conditions. The worn surfaces were examined with scanning electron microscopy and circularly polarized light–differential interference contrast topology microscopy to reveal the wear mechanism. The addition of functionalized graphene nanoplatelets to the nanocomposite compound caused significant changes in tensile strength and elongation values by changing the cross-link density. The wear rate of nanocomposites prepared with graphene nanoplatelets at 1, 4, and 8 phr ratios was 11.15%, 25.24%, and 36.54% lower than the main rubber mixture used, respectively. While the hysteresis loss decreased by 14.83% at 1 phr, this value increased in other filler ratios. Significant differences in temperature change occurred as the amount of filler increased. After the test, the temperature values of nanocomposites with 1 and 4 phr filler ratios were between about 85–89°C, while it was measured as 99°C in nanocomposites with 8 phr filler ratios. It has been observed that the homogeneous distribution of two-dimensional carbon allotropes such as graphene nanoplatelet added to the rubber matrix at the optimum rate will improve tribological properties such as better surface lubrication, low wear rate, and low friction coefficient.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Zhixiong Bai ◽  
Hang Yang ◽  
Ning Su ◽  
Xiaochun Wu

The effect of different loads on the high-temperature wear behavior of 5Cr5Mo2V steel at 700 °C was investigated. Wear morphologies, oxide compositions and matrix evolution were studied. The results showed that the wear rate increased with an increased test load, and the wear mechanism transformed from abrasive-oxidative wear to adhesive-oxidative wear. The relation between a delaminated oxide layer and cracks in the matrix were investigated. The exfoliation of carbides and displacement difference between the matrix and carbides caused a crack initiation. The wear rate strongly related to carbides, and coarse M6C carbides with poor holding power led to a high wear rate. Besides, a diagram of wear characteristics under different loads was suggested in this work.


2018 ◽  
Vol 55 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Marian Bastiurea ◽  
Dumitru Dima ◽  
Gabriel Andrei

Graphene oxide and graphite filled polyester composites were prepared by using conventional melt-mixing methods in order to improve tribological performance of polyester. It was investigated friction stability, microhardness, friction coefficient, and specific wear rate of the composites in details. It was found that the presence of graphite and graphene oxide influenced friction coefficient and wear rate of the composites. Graphene oxide decreased wear rate with increasing of test speed and graphite decreased wear rate for composite for all speeds. Tribological performance of the polyester/graphene composites is mainly attributed to bigger thermal conductivity for graphene, which can easily dissipate the heat which appears during the friction process at bigger forces. The positive influence of graphite on coefficient of friction (COF) of the composites is the result of the clivage of graphite layers during the loadings due to van der Waals weak bonds between the graphite layers.


1997 ◽  
Vol 119 (4) ◽  
pp. 694-699 ◽  
Author(s):  
Sung Won Han ◽  
Thierry A. Blanchet

A model for the steady-state wear behavior of polymer composite materials, including the effects of preferential load support by and surface accumulation of wear-resistant filler particles, is further developed. It is shown that the resultant inverse rule-of-mixtures description of steady-state composite wear rate behavior is independent of the assumed form of filler contact pressure, though preferential load support does affect the degree of surface accumulation of filler particles that occurs. The validity of these descriptions of steady-state wear behavior and surface accumulation as functions of bulk filler volume fraction are investigated by experiments with copper particle-filled PTFE composites for bulk filler volume fractions from 0 to 40 percent. The applicability of the description of surface accumulation for this composite system was limited to bulk filler volume fractions less than 20 percent, a hypothesized result of transition in load-sharing between filler and matrix. The inverse rule-of-mixtures description of steady-state wear rate, however, was maintained over the full range of volume fractions investigated.


Sign in / Sign up

Export Citation Format

Share Document